首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The effect of ozone exposure on Saccharomyces cerevisiae was studied. Factors such as ozone concentration, treatment time, media, initial cell concentration and growth phase were shown to influence ozone response in this organism. Logarithmic phase cells were much more sensitive than stationary phase cells to the lethal effect of ozone.The radiation-sensitive mutants rad3, rad6, rad51 and rad52 of S. cerevisiae were exposed, in water, to 50 ppm of ozone for 30 min. On comparing their survival curves, the rad51 and the rad52 mutants showed a greater sensitivity to ozone exposure than the wild type.  相似文献   

3.
Ozone exposure during growth affects the feeding value of rice shoots   总被引:2,自引:0,他引:2  
Rising tropospheric ozone concentrations have been observed in many Asian countries in recent years. Ozone pollution reduces the yield of agricultural crops but may also affect crop quality. This study aimed at estimating the effect of ozone exposure on feeding quality of rice shoots for ruminant herbivores. Rice plants from two genotypes differing in ozone tolerance were exposed to ozone at a concentration of 120 nl/l for 18 days, and feeding value was determined by chemical analyses and in vitro incubation in rumen fluid. Rice biomass was reduced by an average of 24% in the ozone treatment as compared to the control. Moreover, ozone exposure affected various feed quality parameters. Crude protein content was lower in ozone treated plants (P<0.05). Potential gas production during the in vitro incubation for 96 h also dropped (P<0.01) due to ozone treatment, indicating reduced digestibility of the plant materials. This was explained with an increase in the antinutritive components lignin (P<0.05) and phenolics (P<0.001) due to ozone exposure. An ozone tolerant genotype exhibited a more pronounced increase in phenolics, suggesting that this may constitute a stress defense mechanism. Our results suggest that ozone may affect the feeding value of cereal straws and calls for further research in this direction.  相似文献   

4.
NADPH:quinone oxidoreductase 1 (NQO1) is recognized as a major susceptibility gene for ozone-induced pulmonary toxicity. In the absence of NQO1 as can occur by genetic mutation, the human airway is protected from harmful effects of ozone. We recently reported that NQO1-null mice are protected from airway hyperresponsiveness and pulmonary inflammation following ozone exposure. However, NQO1 regenerates intracellular antioxidants and therefore should protect the individual from oxidative stress. To explain this paradox, we tested whether in the absence of NQO1 ozone exposure results in increased generation of A2-isoprostane, a cyclopentenone isoprostane that blunts inflammation. Using GC-MS, we found that NQO1-null mice had greater lung tissue levels of D2- and E2-isoprostanes, the precursors of J2- and A2-isoprostanes, both at base line and following ozone exposure compared with congenic wild-type mice. We confirmed in primary cultures of normal human bronchial epithelial cells that A2-isoprostane inhibited ozone-induced NF-κB activation and IL-8 regulation. Furthermore, we determined that A2-isoprostane covalently modified the active Cys179 domain in inhibitory κB kinase in the presence of ozone in vitro, thus establishing the biochemical basis for A2-isoprostane inhibition of NF-κB. Our results demonstrate that host factors may regulate pulmonary susceptibility to ozone by regulating the generation of A2-isoprostanes in the lung. These observations provide the biochemical basis for the epidemiologic observation that NQO1 regulates pulmonary susceptibility to ozone.  相似文献   

5.
The nonhost resistance of Arabidopsis against hemibiotrophic fungi in the genus Colletotrichum consists of pre- and post-invasive immune responses. Previously, we reported EDR1 and PEN2 as important components of Arabidopsis pre-invasive resistance toward non-adapted Colletotrichum gloeosporioides (Cg). However, despite their defect in entry control pen2 and edr1 mutants terminated further growth of this pathogen by activating the post-invasive hypersensitive response (HR) accompanied by plant cell death. In the present study, we showed that γ-glutamylcysteine synthetase (GSH1), which is required for glutathione biosynthesis, and tryptophan (Trp) metabolism contribute to pre- and post-invasive non-host resistance against Cg. We found GSH1 to be involved in the PEN2-dependent entry control of Cg. Opposite to pen2 and edr1, gsh1 mutants failed to restrict the invasive growth of the pathogen, which demonstrated the requirement for GSH1 during post-invasive non-host resistance. Based on the infection and metabolic phenotypes of Arabidopsis mutants defective in Trp metabolism, we showed that the biosynthesis of Trp-derived phytochemicals is also essential for resistance to Cg during the post-invasive HR. By contrast, GSH1 and these metabolites are dispensable for the induction of HR cell death, which is triggered in the non-invaded mesophyll cells adjacent to the Cg-invaded epidermal cells.  相似文献   

6.
Two ssb mutants of Escherichia coli, whic carry a lesion in the single-strand DNA-binding protein (SSB), are sensitive to UV-irradiation. We have investigated the influence of SSB on the “SOS” repair pathway by examining the levels of recA protein synthesis. These strains fail to induced normal levels of recA protein after treatment with nalidixic acid or ultraviolet light. The level of recA protein synthesis in wild-type cells is about three times greater than ssb cells. This deficiency in ssb mutants occurs in all strains and at all temperatures tested (30–41.5°). In contrast, the ssb-1 mutant has no effect on temperature-induced recA induction in a recA441 (tif-1) strain. Cells carrying ssb+ plasmids and overproducing normal DNA-binding protein surprisingly are moderated UV-sensitive and have reduced levels of recA protein synthesis. Together these results establish that single-strand DNA-binding protein is involved in the induction of recA, and accounts, at least in part, for the UV sensivitiy of ssb mutant. Three possible mechanisms to explain the role of SSB are discussed.  相似文献   

7.
Plant stomata function in disease resistance by restricting bacteria entry inside leaves. During plant-bacteria interactions, stomatal closure is initiated by the recognition of Microbe-Associated Molecular Patterns (MAMPs). Recently, we have shown that the Lectin Receptor Kinase V.5 (LecRK-V.5) negatively regulates bacterium- and MAMP-induced stomatal closure upstream of Reactive Oxygen Species (ROS) production mediated by abscisic acid signaling. Closed stomata in lecrk-V.5 mutants are correlated with constitutive high level of ROS in guard cells. Consequently, lecrk-V.5 mutants are more resistant to hemi-biotrophic pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000). In this report, we further investigate the role of LecRK-V.5 in resistance against necrotrophic bacteria Pectobacterium carotovorum ssp. carotovorum (Pcc). Upon surface-inoculation lecrk-V.5 mutants exhibited enhanced resistance against Pcc whereas a wild-type level of resistance was observed using infiltration-inoculation, an inoculation method that bypasses the epidermal barrier. Enhanced resistance of dip-inoculated lecrk-V.5 mutants against necrotrophic bacteria, that induce different defense responses than hemi-biotrophic bacteria, further suggests a possible role for LecRK-V.5 in stomatal immunity.  相似文献   

8.

Background and Aims

Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure.

Methods

The response of Siebold''s beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data.

Key Results

The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold''s beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity.

Conclusions

Ozone-induced stomatal closure in Siebold''s beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.  相似文献   

9.
The tie-dyed1 (tdy1) and tdy2 mutants of maize exhibit leaf regions with starch hyperaccumulation and display unusual genetic interactions, suggesting they function in the same physiological process. Tdy2 encodes a putative callose synthase and is expressed in developing vascular tissues of immature leaves. Radiolabelling experiments and transmission electron microscopy (TEM) revealed symplastic trafficking within the phloem was perturbed at the companion cell/sieve element interface. Here, we show that as reported for tdy2 mutants, tdy1 yellow leaf regions display an excessive oil-droplet phenotype in the companion cells. Based on the proposed function of Tdy2 as a callose synthase, our previous work characterizing Tdy1 as a novel, transmembrane-localized protein, and the present findings, we speculate how TDY1 and TDY2 might interact to promote symplastic transport of both solutes and developmentally instructive macromolecules during vascular development at the companion cell/sieve element interface.  相似文献   

10.
Lysine deacetylases (KDACs) inhibitors may have therapeutic value in anti-malarial combination therapies with artemisinin. To evaluate connections between KDACs and artemisinin, Saccharomyces cerevisiae deletion mutants in KDAC genes were assayed. Deletion of RPD3, but not other KDAC genes, resulted in strong sensitivity to artemisinin, which was also observed in sit4Δ mutants with impaired endoplasmic reticulum (ER) to Golgi protein trafficking. Decreased accumulation of the transporters Pdr5p, Fur4p, and Tat2p was observed in rpd3Δ and sit4Δ cells. The unfolded protein response is induced in rpd3Δ cells consistent with retention of proteins in the ER. Disruption of protein trafficking appears to sensitize cells to artemisinin and targeting these pathways may be useful as part of artemisinin based anti-malarial therapy.  相似文献   

11.
Background: In airway disease such as asthma a hyperactive cellular event of epithelial-mesenchymal transition (EMT) is considered as the mechanism of pathological airway tissue remodeling after injury to the airway epithelium. And the initiation of EMT in the airways depends on the epithelial disruption involving dissolution and/or destabilization of the adhesive structures between the cells and ECM. Previously, we have shown that integrin-β4, an epithelial adhesion molecule in bronchial epithelium is an important regulator of cell proliferation and wound repair in human airway epithelial cells. Therefore, in this study we aimed to investigate whether integrin-β4 also regulates EMT phenotypes during injury and repair in airway epithelial cells of both wild type/integrin-β4-/- mice in vivo and cultured cells treated with integrin-β4/nonsense siRNA in vitro.Methods: We induced injury to the airway epithelial cells by either repeated exposure to ozone and mechanical scratch wound, and subsequently examined the EMT-related phenotypic features in the airway epithelial cells including biomarkers expression, adhesion and cytoskeleton reorganization and cell stiffness.Results: The results show that in response to injury (ozone exposure/scratch wound) and subsequent spontaneous repair (ozone withdrawal/wound healing) both in vivo and in vitro, the airway epithelial cells underwent dynamic changes in the epithelial and mesenchymal biomarkers expression, adhesion and cytoskeleton structures as well as cell stiffness, all together exhibiting enhanced EMT phenotypic features after injury and reversal of the injury-induced effects during repair. Importantly, these injury/repair-associated EMT phenotypic changes in airway epithelial cells appeared to be dependent on integrin-β4 expression. More specifically, when integrin-β4 was deficient in mice (integrin-β4-/-) the repair of ozone-injured airway epithelium was impaired and the recovery of ozone-enhanced EMT biomarkers expression in the airway epithelium was delayed. Similarly, in the scratch wounded airway epithelial cells with integrin-β4 knockdown, the cells were impaired in all aspects related to EMT during wound and repair including cell proliferation, wound closure rate, adhesion and cytoskeleton protein expression (vinculin and vimentin), mesenchymal-like F-actin reorganization, cell stiffness and RhoA activation.Conclusion: Taken together, these results suggested that integrin-β4 may be essential in regulating the effects of injury and repair on EMT in airway epithelial cells via influencing both the cell adhesion to ECM and cells'' physical phenotypes through RhoA signaling pathway.  相似文献   

12.
We used the dye N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl) pyridinium dibromide (FM4-64) and a fusion protein, consisting of the green fluorescent protein appended to the peroxisomal targeting signal, Ser-Lys-Leu (SKL), to label the vacuolar membrane and the peroxisomal matrix, respectively, in living Pichia pastoris cells and followed by fluorescence microscopy the morphological and kinetic intermediates in the vacuolar degradation of peroxisomes by microautophagy and macroautophagy. Structures corresponding to the intermediates were also identified by electron microscopy. The kinetics of appearance and disappearance of these intermediates is consistent with a precursor–product relationship between intermediates, which form the basis of a model for microautophagy. Inhibitors affecting different steps of microautophagy did not impair peroxisome delivery to the vacuole via macroautophagy, although inhibition of vacuolar proteases affected the final vacuolar degradation of green fluorescent protein (S65T mutant version [GFP])-SKL via both autophagic pathways. P. pastoris mutants defective in peroxisome microautophagy (pag mutants) were isolated and characterized for the presence or absence of the intermediates. These mutants, comprising 6 complementation groups, support the model for microautophagy. Our studies indicate that the microautophagic degradation of peroxisomes proceeds via specific intermediates, whose generation and/or processing is controlled by PAG gene products, and shed light on the poorly understood phenomenon of peroxisome homeostasis.  相似文献   

13.
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock1. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.  相似文献   

14.
The cytotoxic and mutagenic effect of (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE) in normally excision diploid human cells treated just prior to onset of S was compared with that of cells allowed ~ 16 h for excision repair before onset of S and with that observed in excision-deficient serodema pigmentosum (SP12BE) cells. The cells were synchronized by release from density inhibition of cell replication. DNA synthesis began ~ 22 h after the cells were plated at lower density (i.e., 1.4 × 104 cells/cm2). The frequency of thioguanine-resistant mutants induced in normal cells treated just prior to onset of S was ~ 12- to 16-fold higher than that observed in cells treated in early G1 or treated in G0 (confluence) and then plated at lower density. The frequency approximated that expected for XP12BE cells from extrapolation of data obtained at lower doses. The frequency of mutants measured in normal cells treated in exponential growth was also much higher than that in the cells treated in early G1 or in G0, No such difference could be seen in XP12BE cells treated in exponential growth or in G0. In contrast to the mutagenicity data in the normal cells, there was no significant difference in the slope of the survival curve of normal cells treated at various times prior to S phase at low densities. However, normal cells treated even at the onset of S exhibited survival equal to XP12BE cells give a 4- to 5-fold lower dose. The data support the hypothesis that DNA synthesis is the cellular event which converts unexcised DNA lesions into mutations. However, they indicate that S is not the event primarily responsible for translating DNA damage into cell death. Accompanying studies on the rate of excision of anti BPDE adducts from the normal cells during the period priot to S support the conclusions.  相似文献   

15.
Two strains of L5178Y mouse lymphoma cells, L5178Y-R (LY-R) and L5178Y-S (LY-S), differ markedly in their sensitivity to 254 nm UV radiation (D0 = 0.7 and 5.5 J/m2; n = 6.0 and 2.0 for LY-R and LY-S cells, respctively). In this study, the frequency o hypoxanthine-guanine-phosporibosyl-transferase-deficient mutants was determined, using 6-thioguanine (TG) as a selective agent, in populations of LY-R and LY-S cells exposed to various fluences of UV radiation. The spontaneous mutation frequency for LY-R cells was (3.7 ± 0.6) × 10?5 TGr mutants per viable cell, and the UV induction rate was (2.2 ± 0.8) × 10?4 TGr mutants per viable cell, per J/m2. Both spontaneous and induced mutantion frequencies were much lower for LY-S cells. The sopntaneous mutation frequency for these cells were too low to make its measurement practicable ( < 0.0013 × 10?5 TGr mutants per viable cell). Mutation induction rate was (4.2 ± 2.2) × 10?7 TGr mutants per viable cell, per J/m2. These differences in mutability do not appear to be due to gene duplication in LY-S cells, or to selective growth disadvantage of LY-S-derived TG-resistant mutants. Possible mechanisms underlying the differences in mutability of LY-R and LY-S cells are considered.  相似文献   

16.
Mitochondrial prohibitins (PHB) are highly conserved proteins with a peculiar effect on lifespan. While PHB depletion shortens lifespan of wild‐type animals, it enhances longevity of a plethora of metabolically compromised mutants, including target of rapamycin complex 2 (TORC2) mutants sgk1 and rict1. Here, we show that sgk1 mutants have impaired mitochondrial homeostasis, lipogenesis and yolk formation, plausibly due to alterations in membrane lipid and sterol homeostasis. Remarkably, all these features are suppressed by PHB depletion. Our analysis shows the requirement of SRBP1/SBP‐1 for the lifespan extension of sgk1 mutants and the further extension conferred by PHB depletion. Moreover, although the mitochondrial unfolded protein response (UPRmt) and autophagy are induced in sgk1 mutants and upon PHB depletion, they are dispensable for lifespan. However, the enhanced longevity caused by PHB depletion in sgk1 mutants requires both, the UPRmt and autophagy, but not mitophagy. We hypothesize that UPRmt induction upon PHB depletion extends lifespan of sgk1 mutants through autophagy and probably modulation of lipid metabolism.  相似文献   

17.
The budding yeast lyt1 mutation causes cell lysis. We report here that lyt1 is an allele of cdc15, a gene which encodes a protein kinase that functions late in the cell cycle. Neither cdc15-1 nor cdc15-lyt1 strains are able to septate at 37°C, even though they may manage to rebud. Cells lyse after a shmoo-like projection appears at the distal pole of the daughter cell. Actin polarizes towards the distal pole but the septins remain at the mother–daughter neck. This morphogenetic response reflects entry into a new round of the cell cycle: the preference for polarization from the distal pole was lost in bud1 cdc15 double mutants; double cdc15-lyt1 cdc28-4 mutants, defective for START, did not develop apical projections and apical polarization was accompanied by DNA replication. The same phenomena were caused by mutations in the genes CDC14, DBF2, and TEM1, which are functionally related to CDC15. Apical polarization was delayed in cdc15 mutants as compared with budding in control cells and this delay was abolished in a septin mutant. Our results suggest that the delayed M/G1 transition in cdc15 mutants is due to a septin-dependent checkpoint that couples initiation of the cell cycle to the completion of cytokinesis.  相似文献   

18.
The angioblast is an embryonic endothelial cell precursor that migrates long distances to reach its final position, navigating by sensing attractive and repulsive cues from the environment. Members of the semaphorin family have been implicated in controlling the behaviour of angioblast tip cells through repulsive signalling in vitro, but their in vivo roles are less clear. Here we show that zebrafish semaphorin3e (sema3e) is expressed by endothelial cells of the dorsal aorta, primary motoneurons, and endodermal cells. Further, loss of Sema3e leads to delayed exit of angioblasts from the dorsal aorta in ISV formation. Through transplant analysis, we show that Sema3e acts autonomously and non-autonomously in angioblasts to modulate interactions among themselves. The semaphorin receptors, PlexinD1 and PlexinB2, are expressed by zebrafish angioblasts. Loss of plxnB2 results in delayed ISV sprouting identical to that seen in sema3e morphants, while loss of plexinD1 in out of bounds (obd) mutants results in precocious ISV sprouting. Loss of either sema3e or plxnB2 in obd mutants generates an intermediate phenotype, suggesting that PlxnD1 and Sema3e/PlxnB2 antagonize each other to control timing of ISV sprouting. Consistent with this observation, we show that PlxnB2 acts cell autonomously in endothelial cells. This suggests a model where multiple semaphorin-plexin interactions control angioblast sprouting behaviour.  相似文献   

19.
kar9 was originally identified as a bilateral karyogamy mutant, in which the two zygotic nuclei remained widely separated and the cytoplasmic microtubules were misoriented (Kurihara, L.J., C.T. Beh, M. Latterich, R. Schekman, and M.D. Rose. 1994. J. Cell Biol. 126:911–923.). We now report a general defect in nuclear migration and microtubule orientation in kar9 mutants. KAR9 encodes a novel 74-kD protein that is not essential for life. The kar9 mitotic defect was similar to mutations in dhc1/dyn1 (dynein heavy chain gene), jnm1, and act5. kar9Δ dhc1Δ, kar9Δ jnm1Δ, and kar9Δ act5Δ double mutants were synthetically lethal, suggesting that these genes function in partially redundant pathways to carry out nuclear migration. A functional GFP-Kar9p fusion protein localized to a single dot at the tip of the shmoo projection. In mitotic cells, GFP-Kar9p localized to a cortical dot with both mother–daughter asymmetry and cell cycle dependence. In small-budded cells through anaphase, GFP-Kar9p was found at the tip of the growing bud. In telophase and G1 unbudded cells, no localization was observed. By indirect immunofluorescence, cytoplasmic microtubules intersected the GFP-Kar9p dot. Nocodazole experiments demonstrated that Kar9p's cortical localization was microtubule independent. We propose that Kar9p is a component of a cortical adaptor complex that orients cytoplasmic microtubules.  相似文献   

20.
Decapping is a critical step in the conserved 5′-to-3′ mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7–Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3′-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3′-end protection but unaffected in Lsm1-7–Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3′-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7–Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3′-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号