首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
During recombinant Escherichia coli fermentation with high expression levels, inclusion bodies are often formed. Aqueous two-phase systems have been used in the presence of urea for the initial recovery steps. To investigate phase behavior of such systems we determined phase diagrams of poly(ethylene glycol) (PEG)/sodium sulfate/urea/water and PEG/dextran T-500 (DEX)/urea/phosphate buffer/water at different concentrations of urea and different molecular weight of PEG. PEG/Na2SO4 aqueous two-phase systems could be obtained including up to 30% w/w urea at 25 degrees C and PEG/dextran T-500 up to 35% w/w urea. The binodial was displaced toward higher concentrations with increasing urea concentrations. The partition coefficient of urea was near unity. An unstable mutant of T4-lysozyme with an amino acid replacement in the core (V149T) was used to analyze the effect of phase components on the conformation of the enzyme. We showed that partitioning of tryptophan was not dependent on the concentration of urea in the phase system.  相似文献   

2.
Although large amounts of wild-type human Cu,Zn superoxide dismutase (SOD) are easily expressed in Escherichia coli, the amyotrophic lateral sclerosis-associated mutants have a strong propensity to aggregate into inclusion bodies. The alanine to valine mutation at the fourth codon (A4V) is responsible for a rapidly progressive disease course and is particularly prone to aggregation when expressed in E. coli. We found that A4V SOD remained soluble when expressed at 18 degrees C, but >95% A4V SOD aggregated in inclusion bodies when expressed at 23 degrees C or above. The SOD aggregates dissolved with 4 M urea, suggesting that intermolecular hydrophobic interactions were predominantly responsible for making SOD insoluble. Many of the urea-solubilized subunits were cross-linked via disulfide bridges. Fully active mutant SOD could be produced by dialyzing urea away in the presence of beta-mercaptoethanol and subsequently adding copper plus zinc, providing a fast procedure for purifying hundreds of milligrams of protein. Extensive rinsing removed most contaminating E. coli proteins from A4V SOD inclusion bodies except for a 37 kDa protein identified as outer membrane protein F using MALDI ToF/ToF mass spectrometry. Our results indicate that metal-deficient ALS-mutant SOD folds into stable apo conformation able to rebind metals. At high protein concentrations, SOD forms aggregates through hydrophobic interactions between subunits that seem to act as a kinetic snare to entrap additional proteins.  相似文献   

3.
High-level expression of recombinant proteins in Escherichia coli frequently leads to the formation of insoluble protein aggregates, termed inclusion bodies. In order to recover a native protein from inclusion bodies, various protein refolding techniques have been developed. Column-based refolding methods and refolding in aqueous two-phase systems are often an attractive alternative to dilution refolding due to simultaneous purification and improved refolding yields. In this work, the effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor Cys17Ser variant (rhG-CSF (C17S)) from solubilized inclusion bodies in aqueous two-phase systems polyethylene glycol (PEG)-dextran, containing metal ions, chelated by dye Light Resistant Yellow 2KT (LR Yellow 2KT)-PEG derivative, was investigated. Human G-CSF is a growth factor that regulates the production of mature neutrophilic granulocytes from the precursor cells. Initially, the role of His156 and His170 residues in the interaction of rhG-CSF (C17S) with Cu(II), Ni(II) and Hg(II) ions, chelated by LR Yellow 2KT-PEG, was investigated at pH 7.0 by means of affinity partitioning of purified, correctly folded rhG-CSF (C17S) mutants. It was determined that both His156 and His170 mutations reduced the affinity of rhG-CSF (C17S) for chelated Cu(II) ions at pH 7.0. His170 mutation significantly reduced the affinity of protein for chelated Ni(II) ions. However, histidine mutations had only a small effect on the affinity of protein for Hg(II) ions. The influence of His156 and His170 mutations on the refolding of rhG-CSF (C17S) from solubilized inclusion bodies in aqueous two-phase systems PEG-dextran, containing chelated Ni(II) and Hg(II) ions, was investigated. Reversible interaction of protein mutants with chelated metal ions was used for refolding in aqueous two-phase systems. Both histidine mutations resulted in a significant decrease of protein refolding efficiency in two-phase systems containing chelated Ni(II) ions, while in the presence of chelated Hg(II) ions their effect on protein refolding was negligible. Refolding studies of rhG-CSF variants with different number of histidine mutations revealed that a direct correlation exists between the number of surface histidine residues and refolding efficiency of rhG-CSF variant in two-phase systems containing chelated Ni(II) ions. This method of protein refolding in aqueous two-phase systems containing chelated metal ions should be applicable to other recombinant proteins that contain accessible histidine residues.  相似文献   

4.
5.
The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2-3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies.  相似文献   

6.
Overexpression of recombinant proteins in bacterial systems (such as E. coli) often leads to formation of inactive and insoluble ' inclusion bodies' . Protein refolding refers to folding back the proteins after solubilizing/unfolding the misfolded proteins of the inclusion bodies. Protein aggregation, a concentration dependent phenomenon, competes with refolding pathway. The refolding strategies largely aim at reducing aggregation and/or promoting correct folding. This review focuses on non-chromatographic strategies for refolding like dilution, precipitation, three phase partitioning and macro-(affinity ligand) facilitated three phase partitioning. The nanomaterials which disperse well in aqueous buffers are also discussed in the context of facilitating protein refolding. Apart from general results with these methods, the review also covers the use of non-chromatographic methods in protein refolding in the patented literature beyond 2000. The patented literature generally describes use of cocktail of additives which results in increase in refolding yield. Such additives include low concentration of chaotropic agents, redox systems, ions like SO4(2-) and Cl-, amines, carboxylic acids and surfactants. Some novel approaches like use of a "pressure window" or ionic liquids for refolding and immobilized diselenide compounds for ensuring correct -S-S- bonds pairing have also been discussed in various patents. In most of the patented literature, focus naturally has been on refolding in case of pharmaceutical proteins.  相似文献   

7.
Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. In 10 h of fed-batch fermentation, 1.6 g/L of r-hGH was produced at a cell concentration of 25 g dry cell weight/L. Inclusion bodies from the cells were isolated and purified to homogeneity. Various buffers with and without reducing agents were used to solubilize r-hGH from the inclusion bodies and the extent of solubility was compared with that of 8 M urea as well as 6 M Gdn-HCl. Hydrophobic interactions as well as ionic interactions were found to be the dominant forces responsible for the formation of r-hGH inclusion bodies during its high-level expression in E. coli. Complete solubilization of r-hGH inclusion bodies was observed in 100 mM Tris buffer at pH 12.5 containing 2 M urea. Solubilization of r-hGH inclusion bodies in the presence of low concentrations of urea helped in retaining the existing native-like secondary structures of r-hGH, thus improving the yield of bioactive protein during refolding. Solubilized r-hGH in Tris buffer containing 2 M urea was found to be less susceptible to aggregation during buffer exchange and thus was refolded by simple dilution. The r-hGH was purified by use of DEAE-Sepharose ion-exchange chromatography and the pure monomeric r-hGH was finally obtained by using size-exclusion chromatography. The overall yield of the purified monomeric r-hGH was approximately 50% of the initial inclusion body proteins and was found to be biologically active in promoting growth of rat Nb2 lymphoma cell lines.  相似文献   

8.
Yan F  Qian M  Yang F  Cai F  Yuan Z  Lai S  Zhao X  Gou L  Hu Z  Deng H 《Biochemistry. Biokhimii?a》2007,72(6):664-671
Human PNAS-4 was identified as a novel pro-apoptotic protein in mammalian cells. Here we report the cloning, expression, purification, and antibody production of a PNAS-4 homolog (named xPNAS-4) from Xenopus laevis, an extensively used model organism in exploring gene functions during embryonic development. Recombinant histidine-tagged xPNAS-4 protein was expressed in Escherichia coli as insoluble inclusion bodies. The inclusion bodies were subsequently dissolved in 8 M urea and purified to near homogeneity by Ni2+ affinity chromatography. The resulting denatured protein was refolded by stepwise dilution of urea concentration via dialysis. This procedure yielded about 4 mg refolded protein per liter of E. coli culture with a purity of 95%. The purified protein was identified by liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS) and used to raise anti-xPNAS-4 polyclonal antibodies that were suitable for detecting the expression of PNAS-4 in X. laevis embryos by Western blotting. The availability of recombinant protein and specific polyclonal antibodies will provide a valuable tool in studying apoptotic mechanisms of this protein. To our knowledge, this is the first report to demonstrate the presence of PNAS-4 in X. laevis.  相似文献   

9.
Aqueous two-phase systems of polyethylene glycol (molecular mass 1450, 3350 and 6000)-phosphate and polyethylene-polypropylene oxide (molecular mass 8400)-maltodextrin systems were used in order to study the partition features of recombinant chymosin from inclusion bodies. These systems in the presence of 8M urea were used for the solubilization of inclusion bodies containing recombinant chymosin and for the oxidative renaturation of this protein. Recombinant chymosin showed to be partitioned in favour of the top phase in all studied systems with a partition coefficient between 4 and 6. The recovery of the chymosin biological activity was 32% in the polyethylene-polypropylene oxide, while in the polyethylene glycol-phosphate the recovery was 50-59%. The results indicate that the liquid-liquid extraction would be an adequate tool able to isolate and concentrate chymosin from inclusion bodies with a yield of biological activity higher than that obtained from the standard method (43%).  相似文献   

10.
Chloroplast cyt b6f complexes as well as mitochondrial and bacterial cyt bc1 complexes contain a high potential Rieske iron-sulfur protein which is essential for their function. To characterise the isolated Rieske protein from the mesophilic cyanobacterium Synechocystis PCC6803 we cloned the encoding gene into an expression vector and overexpressed the protein in E. coli. In cells overexpressing the protein no typical Rieske type EPR signal was detected neither in membranes nor in inclusion bodies where the majority of the protein was deposited. The inclusion bodies were isolated from the E. coli cells and denaturated with 8 M urea. With a single anion exchange chromatographic step a pure protein could be obtained which was used for further experiments. The NifS like protein IscS was recently reported to mediate the incorporation of iron-sulfur clusters into ferredoxin in vitro. We used the recombinant IscS protein for the incorporation of the cluster into the folded Rieske apoprotein. Spectroscopic characterisation of the resultant protein by CD and EPR spectroscopy showed the presence of a typical Rieske iron-sulfur centre.  相似文献   

11.
This report presents purification and characterization of the extracellular domain of rat Fas protein, called FIP (FasL interfering protein), expressed as inclusion bodies in Escherichia coli. FIP was extracted from the inclusion bodies, solubilized with 8 M urea, purified by a single-step immobilized metal ion (Ni(2+)) affinity chromatography and refolded. SDS/PAGE and mass spectrometry analysis of the purified protein verified its purity. Fluorescence spectrum analysis showed that the refolding procedure caused structural changes which presumably might have led to oligomerization. The purified FIP has biological activities: it binds specifically soluble Fas ligand and protects human Jurkat lymphocytes against FasL-dependent apoptosis. This efficient procedure of FIP expression in E. coli and renaturation may be useful for production of therapeutically important proteins.  相似文献   

12.
The partitioning of proteins between the coexisting phases of two-phase aqueous polymer systems reflects an intricate and delicate balance of interactions between proteins, polymers, salts and water. Experimental investigations have suggested that a large number of factors influence protein partitioning, including the types of polymers, their molecular weight and concentration; the protein sizes, conformation and composition; salt type and concentration, and solution pH; and the presence of ligands attached to the polymer which may interact with surface sites of the protein. Complementary modelling attempts have been successful in illuminating several molecular-level mechanisms influencing protein partitioning using lattice-model techniques, viral expansions and a scaling-thermodynamic approach. In spite of these experimental and modelling approaches, many of the physical phenomena associated with these complex systems are not well understood. Notably, the precise nature of the protein-polymer interactions and the potent effect of inorganic salts on the partitioning of proteins in these systems remains poorly understood.  相似文献   

13.
Vitreoscilla hemoglobin (VHb), a homodimeric protein containing two heme groups in its native state, was used as a model to investigate inclusion body approtein solubilization, prosthetic group incorporation, and reactivation. High-level expression in recombinant Escherichia coli results in accumulation of a substantial portion of heme-free VHb in inclusion bodies. VHb can be solubilized from these inclusion bodies by relatively low concentrations of urea with the dissolution midpoint at approximately 3.2M urea. Dissolution in the presence of stoichiometric heme shifts the dissolution midpoint to approximately 4.5M urea without influencing the dissolution properties of contaminant proteins, suggesting the effect is specific for VHb. Denaturation of apoVHb and holoVHb obtained from purified native VHb has midpoints of 2.9M and 5.1M urea, respectively. VHb solubilized from inclusion bodies with urea at concentrations from 0 to 3.5M urea can be regenerated by heme addition without dilution of urea to yield active holoVHb. The fraction of solubilized VHb reconstituted upon heme addition is maximum at around 30% when solubilization and reconstitution is conducted in less than 1M urea. At these low urea concentrations, approximately 5% of inclusion body VHb is solubilized. These results show the utility of prosthetic group addition to reconstitute holoVHb in the presence of urea. Also, these findings suggest that some inclusion body protein has partially folded conformation and that a fractional dissolution and refolding process may be advantageous.  相似文献   

14.
The identification and characterization of a protein overexpressed in insoluble inclusion bodies in Escherichia coli are the first crucial and time-limiting steps in recombinant protein expression. Here, a straightforward approach to the analysis of recombinant proteins in inclusion bodies is presented. Inclusion bodies were dissolved in 8M urea and analyzed by matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry without prior desalting. Mass determination was achieved by direct spotting of the samples onto the MALDI target and serial dilution in the matrix. The masses of four different proteins, expressed in inclusion bodies, were determined with a mass accuracy better than 0.1%. Furthermore, protein modifications, such as N-terminal processing of single amino acids or artificial cyanylation caused by incubation of the inclusion bodies with urea at elevated temperatures, could be detected. Similarly, tryptic digests were directly analyzed in 2M urea to obtain peptide mass fingerprints for identification and more detailed information on the primary protein structure and secondary modifications. Due to the presence of ammonia in the urea-containing buffers, no Na(+) adducts were observed in the peptide mass fingerprint analysis. Taken together, the rapid and robust procedures presented here greatly facilitate the analysis of recombinant proteins.  相似文献   

15.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

16.
旨在制备特异性SUA41多克隆抗体,为深入研究其在植物生长发育中的功能提供有力的分子生物学和生物化学的工具。PCR扩增拟南芥SUA41基因中编码280个氨基酸(401-680位氨基酸)的特异片段,经过GATEWAY的DNA重组技术构建了原核表达载体pDEST17-SUA41,用热休克法转化到E.coliBL21(DE3)star感受态细胞,以异丙基β-D-硫代半乳糖苷(IPTG)诱导表达出6×His-SUA41融合蛋白,用8 mol/L尿素缓冲液溶解包涵体并且经过水逐级去除尿素获得提纯的融合蛋白,并利用Western blotting鉴定确认。融合蛋白经Ni金属螯合柱亲和层析得以纯化,用SDS-PAGE进一步纯化。纯化的融合蛋白经过SDS-PAGE后切胶回收,免疫小白兔,制备多抗血清,然后用Western blotting进行检测,鉴定血清特异性和效价。结果显示,融合蛋白6×His-SUA41免疫兔,产生特异性的SUA41兔抗血清,可以检测到细菌和拟南芥组织中SUA41蛋白。用水提纯变性剂尿素溶解的包涵体蛋白具有可行性。制备的特异性SUA41兔抗血清效价高,能够有效地识别大肠杆菌表达的和拟南芥的SUA41蛋白。在有合适的对照情况下,该兔抗血清可以用于分析植物中SUA41蛋白的功能。  相似文献   

17.
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetet-raacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 453-458, 1997.  相似文献   

18.
为探讨诱导温度对于HIV-1 Gag在大肠杆菌中表达产物状态以及尿素浓度对蛋白纯化效果的影响, 将30oC和37oC诱导表达的包涵体分别溶于不同浓度的尿素, 比较溶解性的差异, 并比较复性的不同。将30oC诱导的目的蛋白分别用2 mol/L和8 mol/L尿素溶解后做层析分离, 比较两者的分离效果。结果发现, 与37oC相比, 30oC诱导表达的蛋白能有效溶于低浓度尿素, 并且更容易复性。与8 mol/L尿素溶解相比, 30oC诱导的包涵体用2 mol/L尿素溶解后通过凝胶过滤和离子交换层析纯化能得到更好的分离效果。这提示低温诱导的Gag包涵体中可能含有更多类似天然态构象的蛋白, 而低浓度尿素有利于保持包涵体中蛋白的天然态构象。从而为包涵体蛋白的诱导表达和分离纯化提供了参考。  相似文献   

19.
Recent reports have shown that synthesis of certain recombinant proteins in Escherichia coli results in the production of intracellular inclusion bodies. These studies have not analyzed the structure of the inclusion body especially regarding the intermolecular forces holding it together. We have examined structural aspects of inclusion bodies made in E. coli as a result of high level expression of the eukaryotic protein, calf prochymosin. Prochymosin is a monomeric protein containing three disulfide bridges. It was expressed at up to 20% of cell protein from a plasmid containing the E. coli tryptophan promoter, operator and ribosome binding site. Proteins in the inclusion bodies were analysed by Western blotting of SDS-polyacrylamide gels. When experiments were done using conditions which preserved the in vitro state of thiol groups, inclusions were shown to be composed of multimers of prochymosin molecules which were interlinked partly by disulfide bonds. The inclusion bodies also contained a high concentration of reduced prochymosin. The presence of intermolecular disulfides probably contributes to the difficulty of solubilizing recombinant prochymosin during its purification from E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号