首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen‐mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.  相似文献   

2.
Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism.  相似文献   

3.
Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume’s pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume’s pheasant. The d Nd S ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume’s pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume’s pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume’s pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume’s pheasant MHC after suffering extreme habitat fragmentation.  相似文献   

4.
The genes of the major histocompatibility complex (MHC) are important model genes for understanding selective forces in evolution. Here, we document, using a cloning and sequencing approach, high polymorphism at the exon 2 of the MHC class II B (MHCIIB) genes in the bluethroat (Luscinia svecica); a minimum of 61 unique alleles were detected in 20 individuals, and at least 11 functional loci. In addition, several pseudogenes were revealed. The specimens originated from three different bluethroat subspecies (azuricollis, cyanecula and svecica), and we also analysed four specimens of the closely related thrush nightingale (L. luscinia) for comparison. Phylogenetic analyses of the functional alleles revealed 258 equally parsimonious trees with poor statistical support for the majority of nodes. The distribution of the sequences in the trees point to an ancestral origin of the polymorphism in MHC class II B genes, a portion of which predated the phylogenetic split between the bluethroat and the thrush nightingale. Strong signatures of balancing selection were uncovered for the codons coding for the peptide‐binding residues of the functional MHCIIB exon 2 alleles. Our results highlight the importance of duplication and recombination events for shaping passerine MHC and give insights in the evolutionary dynamics of MHC variation among closely related taxa.  相似文献   

5.
6.
The value of Bam owl pellet analysis for monitoring elusive small mammal species is emphasized and the occurrence of Harvest mouse remains in Barn owl pellets is reviewed for the British Isles. It is suggested that, as a result of changes in agricultural practice, there have been significant changes in the habitat of both Harvest mouse and Barn owl such that neither common name is now strictly appropriate.  相似文献   

7.
8.
Cutrera AP  Lacey EA 《Immunogenetics》2007,59(12):937-948
Balancing selection acting over the evolutionary history of a lineage can result in the retention of alleles among species for longer than expected under neutral evolution. The associated pattern of trans-species polymorphism, in which similar or even identical alleles are shared among species, is often used to infer that balancing selection has occurred. The genes of the major histocompatibility complex (MHC) are thought to be subject to balancing selection that maintains alleles associated with response to specific pathogens. To explore the role of balancing selection in shaping MHC diversity in ctenomyid rodents, we examined allelic variability at the class II DRB and DQA loci in 18 species in the genus Ctenomys. Previous studies of four of these species had revealed significant within-population evidence of positive selection on MHC loci. The current study expands upon these analyses to (1) evaluate among-species evidence of positive selection and (2) explore the potential for balancing selection on MHC genes. Interspecific nucleotide sequence variation revealed significant evidence of positive selection on the DRB and DQA loci. At the same time, comparisons of phylogenetic trees for these MHC loci with a putative species tree based on mitochondrial sequence data revealed multiple examples of trans-specific polymorphism, including sharing of identical DRB and DQA alleles among distantly related species of Ctenomys. These findings suggest that MHC genes in these animals have historically been subject to balancing selection and yield new insights into the complex suite of forces shaping MHC diversity in free-living vertebrates.  相似文献   

9.
Raptorial birds harbor a variety of ectoparasites and the mayority of them are host specific. The aim of this study was to identify the ectoparasites of captive birds of prey from Mexico, as well as to verify their impact in the health of infested birds. Raptorial birds were confiscated and kept in captivity at the Centro de Investigación y Conservación de Vida Silvestre (CIVS) in Los Reyes La Paz, Mexico State. Seventy-four birds of prey (66 Falconiformes and eigth Strigiformes) of 15 species were examined for the presence of ectoparasites. We examined both juvenile and adult birds from both sexes. The overall prevalence was 16.2%; 66.7% of raptors were infested with a single type of external parasite. Lice were the most prevalent ectoparasites (91.7%), followed by feather mites and fleas (8.3%). Degeeriella fulva (72.7%), Craspedorrhynchus sp. (45.4%) and Strigiphilus aitkeni (9.1%) (Ischnocera, Philopteridae) were recovered from wings, head and neck regions of red-tailed hawk (Buteo jamaicensis), Swainson's hawk (B. swainsoni), Harris's hawk (Parabuteo unicinctus) and Barn owl (Tyto alba). Low lice infestation level was observed. Nymphs and females of feather mites Kramerella sp. (Pterolichoidea, Kramerellidae) were recovered solely from Barn owl (T. alba); while one Caracara (Caracara cheriway) was infested by the sticktight flea Echidnophaga gallinacea (Siphonaptera, Pulicidae). No clinical signs were observed in any infested bird. Probably the periodic use of organophosphorates was responsible of the low prevalence and lice infestation levels. The diversity of external parasites illustrates the importance of detailed revision of incoming and long-term captive raptors as part of responsible captive management. Five new hosts and geographic records are presented.  相似文献   

10.
11.
主要组织相容性复合体(MHC)是有颌脊椎动物中发现的编码免疫球蛋白受体的高度多态的基因群,因其在免疫系统中的重要作用而备受关注。脊椎动物不同支系间MHC的结构和演化差异较大。尽管MHC基因特征在哺乳类、鸟类、两栖类和鱼类中已被较好地描述,但对爬行动物MHC的了解仍较少。鉴于爬行动物对于理解MHC基因的演化占据很重要的系统发育位置,研究其MHC具有重要意义。本文就近年来爬行动物MHC的分子结构、多态性维持机制、功能和主要应用的研究现状进行了系统地回顾和总结,并展望了其研究前景。  相似文献   

12.
13.
The major histocompatibility complex (MHC) is an essential part of the vertebrate immune response. MHC genes may be classified as classical, non-classical or non-functional pseudogenes. We have investigated the diversity of class I MHC genes in the brushtail possum, a marsupial native to Australia and an introduced pest in New Zealand. The MHC of marsupials is poorly characterised compared to eutherian mammal species. Comparisons between marsupials and eutherians may enhance understanding of the evolution and functions of this important genetic region. We found a high level of diversity in possum class I MHC genes. Twenty novel sequences were identified using polymerase chain reaction (PCR) primers designed from existing marsupial class I MHC genes. Eleven of these sequences shared a high level of homology with the only previously identified possum MHC class I gene TrvuUB and appear to be alleles at a single locus. Another seven sequences are also similar to TrvuUB but have frame-shift mutations or stop codons early in their sequence, suggesting they are non-functional alleles of a pseudogene locus. The remaining sequences are highly divergent from other possum sequences and clusters with American marsupials in phylogenetic analysis, indicating they may have changed little since the separation of Australian and American marsupials.  相似文献   

14.
The amount of sequence data available today highly facilitates the access to genes from many gene families. Primers amplifying the desired genes over a range of species are readily obtained by aligning conserved gene regions, and laborious gene isolation procedures can often be replaced by quicker PCR‐based approaches. However, in the case of multigene families, PCR‐based approaches bear the often ignored risk of incomplete isolation of family members. This problem is most prominent in gene families with highly variable and thus unpredictable number of gene copies among species, such as in the major histocompatibility complex (MHC). In this study, we (i) report new primers for the isolation of the MHC class IIB (MHCIIB) gene family in birds and (ii) share our experience with isolating MHCIIB genes from an unprecedented number of avian species from all over the avian phylogeny. We report important and usually underappreciated problems encountered during PCR‐based multigene family isolation and provide a collection of measures to help significantly improving the chance of successfully isolating complete multigene families using PCR‐based approaches.  相似文献   

15.
The MHC class I molecule plays an important role in immune response, pathogen recognition and response against vaccines and self- versus non-self-recognition. Studying MHC class I characteristics thus became a priority when dealing with Aotus to ensure its use as an animal model for biomedical research. Isolation, cloning and sequencing of exons 1–8 from 27 MHC class I alleles obtained from 13 individuals classified as belonging to three owl monkey species (A. nancymaae, A. nigriceps and A. vociferans) were carried out to establish similarities between Aotus MHC class I genes and those expressed by other New and Old World primates. Six Aotus MHC class I sequence groups (Ao-g1, Ao-g2, Ao-g3, Ao-g4, Ao-g5 and Ao-g6) weakly related to non-classical Catarrhini MHC were identified. An allelic lineage was also identified in one A. nancymaae and two A. vociferans monkeys, exhibiting a high degree of conservation, negative selection along the molecule and premature termination of the open reading frame at exon 5 (Ao-g5). These sequences high conservation suggests that they more likely correspond to a soluble form of Aotus MHC class I molecules than to a new group of processed pseudogenes. Another group, named Ao-g6, exhibited a strong relationship with Catarrhinis classical MHC-B-C loci. Sequence evolution and variability analysis indicated that Aotus MHC class I molecules experience inter-locus gene conversion phenomena, contributing towards their high variability.  相似文献   

16.
Although the number of studies focusing on the major histocompatibility complex (MHC) in non-model vertebrates is increasing, results are often contradictory, and the structure of MHC is still poorly understood in wild species. Here, we describe the structure and diversity of exon 3 of MHC class I in a passerine bird, the Scarlet Rosefinch (Carpodacus erythrinus). Using capillary electrophoresis single-strand conformation polymorphism, we identified 82 different MHC class I variants in one Rosefinch population nesting at one site in the Czech Republic. Thus far, this is the highest intra-populational MHC class I variation observed in birds. We have not found support for ‘minimal essential’ MHC in this species since individuals exhibited between three and nine different exon 3 sequences, indicating that there may be at least five amplified MHC class I genes. By cloning, we obtained and analysed 29 exon sequences and found that all of them could be translated into potentially functional proteins. We also show that strong positive selection appears to be acting mainly, but not only, on previously described antigen-binding sites in MHC class I genes. Furthermore, our results indicate that recombination has played an important role in generating genetic diversity of these genes in the Scarlet Rosefinch; we discuss the significance of this extremely high genetic diversity in light of the life history traits of this species, such as long-distance migration. The sequence data described in this paper are accessible in GenBank data library under accession numbers FJ392762–FJ392790.  相似文献   

17.
Wilson JR  Ludowyke RI  Biden TJ 《FEBS letters》2001,492(1-2):101-106
The study addressed the functional link between remodelling of the actomyosin cytoskeleton in pancreatic beta-cells and the regulation of insulin secretion. Confocal microscopy revealed that myosin heavy chain (MHC) IIA co-localized very well with filamentous (F)-actin in RINm5F cells but MHCIIB did not. Subcellular localization of MHCIIB was not altered by stimulation with 30 mM KCl (which evokes Ca(2+)-dependent insulin secretion). In contrast MHCIIA redistributed in a manner similar to F-actin, especially towards the apical surface, but also away from peripheral regions towards cell contact points on the basal surface. Finally, Ca(2+)-dependent insulin secretion was inhibited by stabilization of actin filaments with jasplakinolide. The results support a role for the MHCIIA/actin cytoskeleton in regulating insulin secretion.  相似文献   

18.
The major histocompatibility complex (MHC) is integral to the vertebrate adaptive immune system. Characterizing diversity at functional MHC genes is invaluable for elucidating patterns of adaptive variation in wild populations, and is particularly interesting in species of conservation concern, which may suffer from reduced genetic diversity and compromised disease resilience. Here, we use next generation sequencing to investigate MHC class II B (MHCIIB) diversity in two sister taxa of New Zealand birds: South Island saddleback (SIS), Philesturnus carunculatus, and North Island saddleback (NIS), Philesturnus rufusater. These two species represent a passerine family outside the more extensively studied Passerida infraorder, and both have experienced historic bottlenecks. We examined exon 2 sequence data from populations that represent the majority of genetic diversity remaining in each species. A high level of locus co-amplification was detected, with from 1 to 4 and 3 to 12 putative alleles per individual for South and North Island birds, respectively. We found strong evidence for historic balancing selection in peptide-binding regions of putative alleles, and we identified a cluster combining non-classical loci and pseudogene sequences from both species, although no sequences were shared between the species. Fewer total alleles and fewer alleles per bird in SIS may be a consequence of their more severe bottleneck history; however, overall nucleotide diversity was similar between the species. Our characterization of MHCIIB diversity in two closely related species of New Zealand saddlebacks provides an important step in understanding the mechanisms shaping MHC diversity in wild, bottlenecked populations.  相似文献   

19.
Miller HC  Lambert DM 《Molecular ecology》2004,13(12):3709-3721
The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident.  相似文献   

20.
MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号