首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the intervesicular transfer of galactosylceramide between unilamellar bilayer vesicles composed of differing sphingomyelin and phosphatidylcholine molar ratios. To monitor glycolipid transfer from donor to acceptor vesicles, we used a fluorescence resonance energy transfer assay involving anthrylvinyl-labeled galactosylceramide (AV-GalCer) and perylenoyl-labeled triglyceride. The transfer was mediated by glycolipid transfer protein (GLTP), purified from bovine brain and specific for glycolipids. The initial transfer rate and the total accessible pool of glycolipid in the donor vesicles were both measured. An increase in the sphingomyelin content of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) vesicles decreased the transfer rate in a nonlinear fashion. Decreased transfer rates were clearly evident at sphingomyelin mole fractions of 0.22 or higher. The pool of AV-GalCer available for GLTP-mediated transfer also was smaller in vesicles containing high sphingomyelin content. In contrast, AV-GalCer was more readily transferred from vesicles composed of POPC and different disaturated phosphatidylcholines. Our results show that GLTP acts as a sensitive probe for detecting interactions of glycosphingolipids with neighboring lipids and that the lateral mixing of glycolipids is probably affected by the matrix lipid composition. The compositionally driven changes in lipid interactions, sensed by GLTP, occur in membranes that are either macroscopically fluid-phase or gel/fluid-phase mixtures. Gaining insights into how changes in membrane sphingolipid composition alter accessibility to soluble proteins with affinity for membrane glycolipids is likely to help increase our understanding of how sphingolipid-enriched microdomains (i.e., "rafts" and caveolae) are formed and maintained in cells.  相似文献   

2.
Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.  相似文献   

3.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to 'lipid raft' like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

4.
The mammalian glycolipid transfer protein, GLTP, catalyzes the transfer in vitro of glycolipids between membranes. In this study we have examined on one hand the effect of the variations in the donor vesicle composition and on the other hand the effects of variations in the acceptor vesicle composition on the GLTP-catalyzed transfer kinetics of galactosylceramide between bilayer vesicles. For this purpose a resonance energy transfer assay was used, the energy donor being anthrylvinyl-galactosylceramide and the energy acceptor DiO-C16. First, we show that the transfer of anthrylvinyl-galactosylceramide from palmitoyl-oleoyl-phosphatidylcholine donor vesicles was faster than from dipalmitoyl-phosphatidylcholine vesicles, and that there is no transfer from palmitoyl-sphingomyelin vesicles regardless of the cholesterol amount. In this setup the acceptor vesicles were always 100% palmitoyl-oleoyl-phosphatidylcholine. We also showed that the transfer in general is faster from small highly curved vesicles compared to that from larger vesicles. Secondly, by varying the acceptor vesicle composition we showed that the transfer is faster to mixtures of sphingomyelin and cholesterol compared to mixtures of phosphatidylcholines and cholesterol. Based on these experiments we conclude that the GLTP mediated transfer of anthrylvinyl-galactosylceramide is sensitive to the matrix lipid composition and membrane bending. We postulate that a tightly packed membrane environment is most effective in preventing GLTP from accessing its substrates, and cholesterol is not required to protect the glycosphingolipid in the membrane from being transferred by GLTP. On the other hand GLTP can more easily transfer glycolipids to ‘lipid raft’ like membranes, suggesting that the protein could be involved in raft assembly.  相似文献   

5.
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.  相似文献   

6.
Werder M  Han CH  Wehrli E  Bimmler D  Schulthess G  Hauser H 《Biochemistry》2001,40(38):11643-11650
The serum lipoprotein high-density lipoprotein (HDL), which is a ligand of scavenger receptors such as scavenger receptor class B type I (SR-BI) and cluster determinant 36 (CD36), can act as a donor particle for intestinal lipid uptake into the brush border membrane (BBM). Both cholesterol and phospholipids are taken up by the plasma membrane of BBM vesicles (BBMV) and Caco-2 cells in a facilitated (protein-mediated) process. The protein-mediated transfer of cholesterol from reconstituted HDL to BBMV depends on the lipid composition of the HDL. In the presence of sphingomyelin, the transfer of cholesterol is slowed by a factor of about 3 probably due to complex formation between cholesterol and the sphingolipid. It is shown that the mechanism of lipid transfer from reconstituted HDL to either BBMV or Caco-2 cells as the acceptor is consistent with selective lipid uptake: the lipid donor docks at the membrane-resident scavenger receptors which mediate the transfer of lipids between donor and acceptor. Selective lipid uptake implies that lipid, but no apoprotein is transferred from the donor to the BBM, thus excluding endocytotic processes. The two BBM models used here clearly indicate that fusion of donor particles with the BBM can be ruled out as a major mechanism contributing to intestinal lipid uptake. Here we demonstrate that CD36, another member of the family of scavenger receptors, is present in rabbit and human BBM vesicles. This receptor mediates the uptake of free cholesterol, but not of esterified cholesterol, the uptake of which is mediated exclusively by SR-BI. More than one scavenger receptor appears to be involved in the uptake of free cholesterol with SR-BI contributing about 25% and CD36 about 35%. There is another yet unidentified protein accounting for the remaining 30 to 40%.  相似文献   

7.
The ability of human plasma phospholipid transfer protein to transfer L-alpha-[14C]dipalmitoylphosphatidylcholine (DPPC) from donor vesicles to acceptor high-density lipoproteins (HDL) was examined, using vesicles of different compositions and sizes, and native or chemically modified HDL. Phosphatidylcholine (PC) transfer was inhibited by both cholesterol and sphingomyelin incorporation into egg-PC vesicles. On a molar basis, cholesterol inhibited transfer about 5-fold more than sphingomyelin; however, the effects of both lipids on the fluidity of the vesicle membrane (measured by fluorescence polarization of diphenylhexatriene), were closely correlated with their effects on PC transfer activity. Increase in vesicle size, and decrease in bilayer curvature, also reduced transfer: the largest vesicles had no transfer activity at all. Addition of phosphatidic acid up to 17 mol% had no effect on PC transfer. HDL apolipoprotein lysyl residues were chemically modified by reductive methylation, citraconylation, or acetoacetylation. The effects of modification on the apolipoprotein structure and on the HDL particle were assessed by intrinsic fluorescence measurements, SDS-polyacrylamide gel electrophoresis patterns, and gel chromatography. Only acetoacetylation significantly affected any of these parameters. The ability of HDL to accept PC in the absence of phospholipid transfer protein decreased with an increase in apolipoprotein negative charge while, in the presence of phospholipid transfer protein, the acceptor ability of HDL increased up to 1.7-fold with an initial increase in negative charge and then decreased, ultimately to zero, upon extensive modification.  相似文献   

8.
The glycolipid transfer protein (GLTP) is capable of transporting glycolipids from a donor membrane, through the aqueous environment, to an acceptor membrane. The GLTP mediated glycolipid transfer from sphingomyelin membranes is very slow. In contrast, the transfer is fast from membranes composed of phosphatidylcholine. The lateral glycolipid membrane organization is known to be driven by their tendency to mix non-randomly with different membrane lipids. Consequently, the properties of the membrane lipids surrounding the glycolipids play an important role in the ability of GLTP to bind and transfer its substrates. Since GLTP transfer of glycolipids is almost nonexistent from sphingomyelin membranes, we have used this exceptionality to investigate if membrane intercalators can alter the membrane packing and induce glycolipid transfer. We found that the bile salts cholate, deoxycholate, taurocholate and taurodeoxycholate, cause glucosylceramide to become transferrable by GLTP. Other compounds, such as single chain lipids, ceramide and nonionic surfactants, that have membrane-perturbing effects, did not affect the transfer capability of GLTP. We speculate that the strong hydrogen bonding network formed in the interfacial region of glycosphingolipid-sphingomyelin membranes is disrupted by the membrane partition of the bile salts causing the glycosphingolipid to become transferrable.  相似文献   

9.
Biosynthesis of sphingomyelin from ceramides was investigated in lung subcellular fractions by incubating a lyophilized mixture of albumin and subcellular fraction (0.1-0.2 mg of protein) coated with [acyl-14C]-ceramide and phosphatidyl[methyl-3H]choline in Tris-buffer. The lamellar-body-rich fraction exhibited the highest specific activity for sphingomyelin biosynthesis measured by 14C incorporation into sphingomyelins or by [3H]phosphocholine transfer from phosphatidylcholines. Plasma membranes formed the next most active fraction, followed by the 'smooth' and, then, the 'rough' endoplasmic reticulum. Sphingomyelin biosynthesis by lamellar bodies was optimum at pH 7.4 and was inhibited by sphingomyelins formed. Slight inhibitory effects were also observed with Mn2+, Ca2+ and lysophosphatidylcholine. Phosphocholine transfer from CDPcholine was not observed under the reaction conditions employed. Ceramide conversion and phosphocholine transfer increased with ceramide concentration to reach a maximum at about 0.06 mM. The highest conversion rate was observed when 18:1 ceramide was used as an acceptor. When 1-palmitoyl-2-oleoylphosphatidylcholine was the phosphocholine donor, the overall biosynthesis of sphingomyelin was much higher than when using dipalmitoylphosphatidylcholine. These results suggest the possible involvement of the studied reaction in the control of the degree of saturation of the surfactant phosphatidylcholine.  相似文献   

10.
The effect of lipid composition on the rate of cholesterol movement between cellular membranes is investigated using lipid vesicles. The separation of donor and acceptor vesicles required for rate measurement is achieved by differential centrifugation so that the lipid effect can be quantified in the absence of a charged lipid generally used for ion-exchange-based separation. The rate of cholesterol transfer from small unilamellar vesicles (SUVs) containing 50 mol% cholesterol to a common large unilamellar vesicle (LUV) acceptor containing 20 mol% cholesterol decreases with increasing mol% of sphingomyelin in the SUVs, while phosphatidylethanolamine and phosphatidylserine have no appreciable effect at physiologically relevant levels. There is a large decrease in rate when phosphatidylethanolamine constitutes 50 mol% of donor phospholipids. Interestingly, gangliosides which have the same hydrocarbon moiety as sphingomyelin exert an opposite effect. The effect of spingomyelin seems to be mediated by its ability to decrease the fluidity of the lipid matrix, while that of gangliosides may arise from a weakening of phosphatidylcholine-cholesterol interactions or from a more favourable (less polar) microenvironment for the desorption of cholesterol provided by the head-group interactions involving sugar residues. If the effect of asymmetric transbilayer distribution of lipids is taken into consideration, the observed composition-dependent rate changes could partly account for the large difference in the rates of cholesterol desorption from the inner and outer layers of plasma membrane. Such rate differences may be responsible for an unequal steady-state distribution of cholesterol among various cellular membranes and lipoproteins.  相似文献   

11.
An approach is described using fluorescence resonance energy transfer (FRET) to detect inhomogeneity in lipid organization, on distance scales of the order of tens of nanometers or greater, in lipid bilayers. This approach compares the efficiency of energy transfer between two matched fluorescent lipid donors, differing in their affinities for ordered versus disordered regions of the bilayer, and an acceptor lipid that distributes preferentially into disordered regions. Inhomogeneities in bilayer organization, on spatial scales of tens of nanometers or greater, are detected as a marked difference in the efficiencies of quenching of fluorescence of the two donor species by the acceptor. Using a novel pair of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled tetraacyl lipids as donor species with a rhodaminyl-labeled acceptor, this strategy faithfully reports homo- versus inhomogeneous mixing in each of several lipid bilayer systems whose organization on the FRET distance scale can be predicted from previous findings. Interestingly, however, the present FRET method reports clear evidence of inhomogeneity in the organization of mixtures combining sphingomyelin or saturated phospholipids with unsaturated phospholipids and physiological proportions of cholesterol, even at physiological temperatures where these systems have been reported to appear homogeneous by fluorescence microscopy. These results indicate that under physiological conditions, lipid mixtures mimicking the lipid composition of the outer leaflet of the plasma membrane can form domains on a spatial scale comparable to that inferred for the dimensions of lipid rafts in biological membranes.  相似文献   

12.
Bovine liver phospholipid exchange protein catalyzes the transfer of phosphatidylcholine between donor and acceptor populations of single bilayer phospholipid vesicles. In comparing egg and dimyristoylphosphatidylcholine vesicles, larger transfer rates are found for the unsaturated phospholipid. The bidirectional transfer rates measured from donor to acceptor and from acceptor to donor, are equivalent, suggesting that the protein facilitates an exchange rather than a net transfer of phosphatidylcholine.  相似文献   

13.
Lanthanide chelates used as donors offer several advantages over classical fluorescence probes in resonance energy transfer distance measurements. One of these advantages is that energy transfer can be conveniently measured using sensitized acceptor decay measurements. In these measurements a long microsecond lifetime of the lanthanide donor and a short nanosecond lifetime of the acceptor allow elimination of a signal from the unquenched donor. Therefore, the decay of sensitized acceptor emission reflects decay properties of the donor engaged in energy transfer. The purpose of this work is to point out the importance of the fact that the amplitude of the sensitized acceptor signal is dependent on the resonance energy transfer rate constant. Thus, in the case where there are two or more populations of donors with different energy transfer rate constants, the relative amplitudes of corresponding decay components observed in sensitized acceptor emission do not represent the relative populations of the donors. We use simulations to show that these effects can be very significant. A minor population of donors with a high rate of energy transfer can produce sensitized acceptor decay which is dominated by a decay component corresponding to this minor donor population. Using a simple experimental system of rapid diffusion limit energy transfer between a europium chelate and Cy5 acceptor we show that the predicted dependency of sensitized acceptor decay amplitude on the energy transfer rate is indeed observed. We suggest that the relative importance of decay components observed in sensitized acceptor emission should be evaluated after an appropriate correction of their values such that they properly reflect possible different populations of donors. We describe a method to perform such correction.  相似文献   

14.
The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles (20-nm diameter) and large, unilamellar acceptor vesicles (70-nm diameter) were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. When viewed within the context of other recent studies involving neutral glycosphingolipids, these findings provide additional evidence for the existence of microscopic, glycosphingolipid-enriched domains within the phospholipid bilayer.  相似文献   

15.
Due to their particle size in the submicrometer range, lipid nanoparticles are suitable for parenteral administration. In order to obtain information on their potential in vivo performance, a simple and effective in vitro assay to evaluate the drug release behavior of such particles is required. This study compares the use of different experimental setups for this purpose. Lipid nanoparticles from trimyristin which were loaded with fluorescent lipophilic drug models (a temoporfin and Nile red) were used as donor particles. The transfer of the two drug models to multilamellar vesicles (MLV) and emulsion droplets as lipophilic acceptor compartments was examined. The determination of the transferred substance was performed either after separation by centrifugation or by an in situ flow cytometric technique. The transfer of temoporfin was slow to the acceptor MLV and very rapid to the acceptor emulsion. With both acceptors, the transfer of temoporfin stopped at a concentration much lower than the theoretical equilibrium values. The transfer of the less lipophilic drug Nile red was very rapid to both acceptors with equilibrium concentrations close to the expected values. The transfer results of temoporfin especially to the acceptor MLV obtained with the two detection techniques were comparable while the centrifugation technique indicated an apparently higher Nile red transfer rate than the flow cytometric technique. Both techniques are equally suitable to study the transfer of temoporfin, while the flow cytometric technique is advantageous to measure the very rapid transfer of Nile red.Key words: drug transfer, flow cytometry, lipid nanoparticles, liposomes, ultracentrifugation  相似文献   

16.
The transfer of detergent solubilized and purified gamma-glutamyl transpeptidase (gamma-GTase), of hog kidney cortex, from proteoliposomes into human erythrocyte ghost membranes has been studied. The transfer of gamma-glutamyl transpeptidase was observed upon incubation of gamma-GTase incorporated dipalmitoylphosphatidylcholine vesicles with erythrocyte ghost membranes at 37 degrees C for 12 h. The extent of transfer was dependent upon the fluidity of donor proteoliposomes, being more when dipalmitoylphosphatidylcholine proteoliposomes were used compared to dimyristoylphosphatidylcholine, and intermediate values were observed when binary mixtures of DMPC and DPPC were used. Moreover, the transfer of gamma-GTase was facilitated when rigid basic phospholipid proteoliposomes were used as donor. The transfer of gamma-GTase has been observed to be associated with the removal of intrinsic membrane proteins and lipids from erythrocytes, mainly acetylcholinesterase, sphingomyelin, and cholesterol. An enhancement in the fluorescence due to resonance energy transfer was observed when ghost membranes containing fluorescent donor probe were incubated with proteoliposomes containing fluorescent acceptor probe, indicating that fusion but not adsorption of vesicles occurs during the transfer process. However, the inability of entrapped [14C]-sucrose delivery from proteoliposomes into ghost membrane vesicle suggest that fusion per se is not primarily involved in the transfer process. It appears that the transfer of gamma-glutamyl transpeptidase occurs by a collisional transfer process resulting in intermembrane protein transfer. The gamma-glutamyl transpeptidase implanted ghost membranes exhibited the uptake of L-glutamate which was inhibited by serine-borate, an inhibitor of transpeptidase activity. In addition, the uptake of L-glutamate was inhibited by the dipeptide gamma-glutamyl-L-glutamate, thus supporting the proposed role of gamma-glutamyl transpeptidase in the uptake of amino acids in biological membranes.  相似文献   

17.
The specificities of a human plasma and bovine liver phospholipid transfer protein were studied using a fluorescence assay based on the transfer of pyrenyl phospholipids. This method was used previously to determine the mechanism of spontaneous transfer of phospholipids between model lipoproteins (Massey, J.B., Gotto, A.M., Jr. and Pownall, H.J. (1982) Biochemistry 21, 3630-3636). The pyrenyl phospholipids varied in the headgroup moiety; pyrenyl phosphatidylcholines contained different fatty acyl chains in the sn-1 position. Model high-density lipoproteins (R-HDL) consisting of apolipoprotein A-I and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were used as donor and acceptor particles. As previously shown, the bovine liver protein mediated the transfer of only phosphatidylcholine. In contrast, the human plasma protein transferred all species studied which included a phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, sphingomyelin, galactosylcerebroside, and a diacylglycerol. The activity of these transfer proteins was only slightly affected by changes in the acyl chain composition of the transferring lipid. Pyrenyl and radioactive ([3H]POPC) phospholipids were transferred with equal rates by the human transfer protein, suggesting that this protein has similar binding characteristics for pyrenyl and natural phospholipids. Spontaneous phospholipid transfer occurs by the aqueous diffusion of monomeric lipid where the rate is highly dependent on fatty acyl chain composition. In this study, no correlation between the rate of spontaneous transfer and protein-mediated transfer was found. The apparent Km values for R-HDL and low-density lipoprotein (LDL), when used as acceptors, were similar when based on the number of acceptor particles. The apparent Vmax for the bovine liver protein was identical for R-HDL and LDL but for the plasma protein Vmax was slightly higher for R-HDL. These results suggest that, like the bovine liver protein, the plasma protein functions as a phospholipid-binding carrier that exchanges phospholipids between membrane surfaces. The assay of lipid transfer proteins by pyrenyl-labeled lipids is faster and easier to perform than other current methods, which require separation of donor and acceptor particles, and is suitable for studies on the function and mechanism of action of lipid transfer proteins.  相似文献   

18.
Nuclear magnetic resonance (NMR) spectroscopy was used to investigate the transfer of sialic acid from a range of sialic acid donor compounds to acceptor molecules, catalyzed by Trypanosoma cruzi trans-sialidase (TcTS). We demonstrate here that NMR spectroscopy is a powerful tool to monitor the trans-sialidase enzyme reaction for a variety of donor and acceptor molecules. The hydrolysis or transfer reactions that are catalyzed by TcTS were also investigated using a range of N-acetylneuraminosyl-based donor substrates and asialo acceptor molecules. These studies showed that the synthetic N-acetylneuraminosyl donor 4-methylumbelliferyl alpha-d-N-acetylneuraminide (MUN) is hydrolyzed by the enzyme approximately 3-5 times faster than either the disaccharide Neu5Acalpha(2,3)Galbeta1Me or the trisaccharide Neu5Acalpha(2,3)Lacbeta1Me. In the transfer reaction, we show that Neu5Acalpha(2,3)Lacbeta1Me is the most favorable substrate for TcTS and is a better substrate than the naturally-occurring N-acetylneuraminosyl donor alpha1-acid glycoprotein. In the case of MUN as the donor molecule, the transfer of Neu5Ac to different acceptors is significantly slower than when other N-acetylneuraminosyl donors are used. We hypothesize that when MUN is bound by the enzyme, the orientation and steric bulk of the umbelliferyl aglycon moiety may restrict the access for the correct positioning of an acceptor molecule. AutoDock studies support our hypothesis and show that the umbelliferyl aglycon moiety undergoes a strong pi-stacking interaction with Trp-312. The binding properties of TcTS towards acceptor (lactose) and donor substrate (Neu5Ac) molecules have also been investigated using saturation transfer difference (STD) NMR experiments. These experiments, taken together with other published data, have clearly demonstrated that lactose in the absence of other coligands does not bind to the TcTS active site or other binding domains. However, in the presence of the sialic acid donor, lactose (an asialo acceptor) was observed by NMR spectroscopy to interact with the enzyme's active site. The association of the asialo acceptor with the active site is an absolute requirement for the transfer reaction to proceed.  相似文献   

19.
Glycolipid transfer protein from bovine brain   总被引:2,自引:0,他引:2  
Glycolipid transfer protein from bovine brain has been purified partially by ammonium sulfate precipitation, CM-52 ion-exchange, and Sephadex G-75 column chromatography. Both pyrene-labeled and tritium-labeled glucocerebrosides have been used to study the kinetics of protein-mediated transfer between donor and acceptor vesicles. Protein accelerates glucocerebroside transfer but does not accelerate phospholipid transfer. In colyophilized small sonicated vesicles (10% glucocerebroside, 90% 1-palmitoyl-2-oleoyl-phosphatidylcholine) about two-thirds of the glycolipid is transferred in 2 h and the remaining one-third does not transfer (up to 5 h). For donor and acceptor vesicles made of dipalmitoylphosphatidylcholine or 1-palmitoyl-2-oleoyl-phosphatidylcholine, glucocerebroside (10% in donors) is transferred rapidly only when both the donor and acceptor matrix phospholipids are in the liquid-crystalline state. If either donor or acceptor vesicles are in the gel state, transfer protein mediated transfer is much reduced. The amount of transfer protein bound specifically to glucocerebroside-containing vesicles is nearly equal above and below the matrix phospholipid phase transition temperature. Bound protein transfers glucocerebroside upon addition of acceptor vesicles.  相似文献   

20.
The general case of F?rster-type energy transfer is that in which energy is exchanged in both directions between two unlike fluorophores. In such cases, energy is transferred from the conventionally defined donor to the conventionally defined acceptor (forward transfer) and at the same time from the acceptor to the donor (reverse transfer). Expressions are derived to describe the fluorescence intensities and lifetimes of fluorophores undergoing simultaneous forward and reverse transfer; these are compared with corresponding quantities for the case more usually considered, in which only forward transfer is significant. It is shown that the presence of reverse transfer removes the distinction between donor and acceptor, and allows such anomalous effects as 'acceptor quenching'. A confirmatory example is described. It is shown that the equations generally used in distance determination by steady-state fluorescence spectroscopy can also be applied in the presence of reverse transfer, if a correction term is included; however, for lifetime spectroscopy the correction is more complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号