首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide inhibitors of Streptomyces dd-carboxypeptidases   总被引:7,自引:6,他引:1  
1. Peptides that inhibit the dd-carboxypeptidases from Streptomyces strains albus G and R61 were synthesized. They are close analogues of the substrates of these enzymes. The enzymes from albus G and R61 strains are in general inhibited by the same peptides, but the enzyme from strain R39 differs considerably. 2. The two C-terminal residues of the peptide substrates and inhibitors appear to be mainly responsible for the initial binding of the substrate to the enzymes from albus G and R61 strains. The side chain in the third residue from the C-terminus seems critical in inducing catalytic activity. 3. Experimental evidence is presented suggesting that the amide bond linking the two C-terminal residues has a cis configuration when bound to the enzymes from strains albus G and R61. 4. The peptide inhibitors are not antibiotics against the same micro-organisms.  相似文献   

2.
Kumar I  Pratt RF 《Biochemistry》2005,44(30):9961-9970
Bacterial dd-peptidases, the targets of beta-lactam antibiotics, are believed to catalyze d-alanyl-d-alanine carboxypeptidase and transpeptidase reactions in vivo. To date, however, there have been few concerted attempts to explore the kinetic and thermodynamic specificities of the active sites of these enzymes. We have shown that the peptidoglycan-mimetic peptide, glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl-d-alanine, 1, is a very specific and reactive carboxypeptidase substrate of the Streptomyces R61 dd-peptidase [Anderson, J. W., and Pratt, R. F. (2000) Biochemistry 39, 12200-12209]. In the present paper, we explore the transpeptidation reactions of this substrate, where the enzyme catalyzes transfer of the glycyl-l-alpha-amino-epsilon-pimelyl-d-alanyl moiety to amines. These reactions are believed to occur through capture of an acyl-enzyme intermediate by amines rather than water. Experiments show that effective acyl acceptors require a carboxylate group and thus are amino acids and peptides. d(but not l)-amino acids, analogues of the leaving group of 1, are good acceptors. The effectiveness of d-alanine as an acceptor increases with pH, suggesting that the bound and reactive form of an amino acid acceptor is the free amine. Certain glycyl-l(but not d)-amino acids, such as glycyl-l-alanine and glycyl-l-phenylalanine, are also good acceptors. These molecules may resemble the N-terminus of the Streptomyces stem peptides that, presumably, are the acceptors in vivo. The acyl acceptor binding site therefore demonstrates a dual specificity. That d-alanyl-l-alanine shows little activity as an acceptor suggested that, on binding of acceptors to the enzyme, the carboxylate of d-amino acids does not overlap with the peptide carbonyl group of glycyl-l-amino acids. Molecular modeling of transpeptidation tetrahedral intermediates and products demonstrated the likely structural bases for the stereospecificity of the acceptors and the nature of the dual function acceptor binding site. For both groups of acceptors, the terminal carboxylate appeared to be anchored at the active site by interaction with Arg 285 and Thr 299.  相似文献   

3.
gamma-Glutamyltranspeptidase was purified ca. 15,200-fold from cell-free extracts of Proteus mirabilis to electrophoretic homogeneity and then crystallized. The enzyme has an estimated molecular weight of 80,000 and consists of two different subunits with molecular weights of ca. 47,000 and 28,000. The purified enzyme catalyzed hydrolysis and transpeptidation of various gamma-glutamyl compounds, including the oxidized and reduced forms of glutathione, gamma-glutamyl compounds of L-phenylalanine, L-tyrosine, L-histidine, L-alpha-aminobutyrate, L-leucine, and p-nitroaniline. Glycylglycine, L-phenylalanine, L-methionine, L-histidine, L-tryptophan, and L-isoleucine were good acceptors of the gamma-glutamyl moiety in the transpeptidation reaction. Km values for gamma-glutamyl compounds were on the order of 10(-4) to 10(-5) M, and those for acceptor peptides and amino acids were on the order of 10(-2) to 10(-3) M. The enzyme was inhibited by L-serine plus borate and 6-diazo-5-oxo-L-norleucine, which are inhibitors of gamma-glutamyltranspeptidases isolated from mammals. Various amino acids alone were found to inhibit the transpeptidation competitively with a gamma-glutamyl donor. Kinetic analysis suggested that the reaction sequence of substrate binding and product release proceeds according to a ping pong bi bi mechanism.  相似文献   

4.
Penicillopepsin catalyses transpeptidation reactions involving the transfer of the N-terminal amino acids of suitable substrates via covalent acyl intermediates to acceptor peptides, usually the substrate. The major products obtained when Phe-Tyr-Thr-Pro-Lys-Ala and Met-Leu-Gly were used as substrates were Phe-Phe and Met-Met respectively. With Met-Leu-Gly the tetrapeptide Met-Met-Leu-Gly was observed as probable intermediate. Co-incubation of Leu-Tyr-Leu and Phe-Tyr-Thr-Pro-Lys-Ala led to the formation of Leu-Phe and Phe-Leu as well as Leu-Leu and Phe-Phe. No reaction was observed with tripeptides in which the first or second amino acid is glycine. It appears that two amino aicds with large hydrophobic residues are needed for the transpeptidation reaction. Nucleophilic compounds other than peptides, such as hydroxylamine, aliphatic alcohols and dinitrophenylhydrazine, were not acceptors for the acyl group. Leucine, phenylalanine and leucine methyl ester also had no effect on the reaction. The transpeptidation reaction proceeded readily at pH 3.6 and 4.7. At pH 6.0 the reaction was slow and at pH 1.9 little or no transpeptidation was observed. Porcine pepsin catalyses similar transpeptidation reactions. Sequence studies show that porcine pepsin and penicillopepsin are homologous. The present study also suggests that they have a very similar mechanism. Evidence available at this time indicates that the mechanism of these enzymes is complex and may be modulated by secondary substrate-enzyme interactions. A hypothesis is presented which proposes that pepsin-catalysed reactions proceed via different covalent intermediates (amino-intermediates or acylintermediates) depending on the nature of the substrate. The possibility that some reactions do not involve covalent intermediates is also discussed.  相似文献   

5.
Abstract— γ-Glutamyl transpeptidase from bovine choroid plexus has been shown to be a membrane-bound enzyme. Partial purification of the enzyme has been accomplished using detergent extraction and ammonium sulfate fractionation. Important determinants of enzymatic activity with acceptor substrates included chain length, stereoisomerism, and amino acid composition of the acceptors. L-Methionine was the best amino acid substrate and its corresponding peptides L-methionylmethionine and L-methionyl-L-serine were also good γ-glutamyl acceptors. L-Alanine and glycine were poor acceptor substrates; whereas, some peptides containing these amino acids were excellent substrates. Glycylglycine was significantly more effective as a γ-glutamyl acceptor than glycine, triglycine, or tetraglycine. L-Alanylglycine was a superior acceptor to glycine, L-alanine, or L-alanylglycylglycine, while the D-isomer of alanylglycine was only minimally effective as an acceptor substrate. In general glycyl peptides were the best acceptor substrates examined. Our findings that γ-glutamyl transpeptidase could catalyze the transfer of γ-glutamyl groups to glycylglycyl-L-alanine and L-alanylglycylglycine are of special interest, since few examples of tripeptide acceptors for the enzyme have been found. It is suggested that γ-glutamyl transpeptidase might play a role in the inactivation and/or transport of biologically active peptides.  相似文献   

6.
The kinetics of sheep kidney gamma-glutamyl transpeptidase was studied using a novel substrate L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate. When the substrate was incubated with the enzyme in the presence of an amino acid or peptide acceptor, the corresponding L-alpha-methyl-gamma-glutamyl derivatives of the acceptors were formed. In the absence of acceptor only hydrolysis occurred, and no transpeptidation products were detected. The presence of the methyl group on the alpha-carbon apparently prevents enzymatic transfer of the L-alpha-methyl-gamma-glutamyl residue to the amino group of the substrate itself (autotranspeptidation). When the enzyme was incubated with conventional substrates, such as glutathione or gamma-glutamyl-p-nitroanilide and an amino acid acceptor, hydrolysis, autotranspeptidation, and transpeptidation to the acceptor occurred concurrently. Initial velocity measurements in which the concentration of L-alpha-methyl-gamma-glutamyl-L-alpha-aminobutyrate was varied at several fixed acceptor concentrations, and either the release of alpha-aminobutyrate or the formation of the transpeptidation products was determined, yielded results which are consistent with a ping-pong mechanism modified by a hydrolytic shunt. A scheme of such a mechanism is presented. This mechanism predicts the formation of an alpha-methyl-gamma-glutamyl-enzyme intermediate, which can react with an amino acid to form the transpeptidation product; or in the absence of, or in the presence of low concentrations of amino acids, can react with water to form the hydrolytic products. Kinetic derivations for the reaction of the enzyme with the conventional substrate gamma-glutamyl-p-nitroanilide predict either linear or nonlinear double-reciprocal plots, depending on the prevalence of the hydrolytic, autotranspeptidation, or transpeptidation reactions. The results of kinetic experiments confirmed these predictions.  相似文献   

7.
Under alkaline conditions, the membrane-bound DD-carboxypeptidase of Streptococcus faecalis ATCC 9790 catalyses exchange reactions in which the X-L-R3-D-Ala moiety of peptides of the type X-L-R3-D-Ala-D-Ala is transferred to simple amino compounds such as D-alanine, glycine and glycyl-glycine. The enzyme system is unable, however, to catalyse complex reactions that would simulate the natural transpeptidation reaction.  相似文献   

8.
The composition and structural aspects of the amino and carboxylic acid groups required for incorporation into peptides by transpeptidation and inhibition of hydrolysis in carboxypeptidase Y-catalyzed reactions were studied. Separation of these two groups by even one carbon prevents incorporation by transpeptidation and does not inhibit incorporation of other amino acids into model peptides. Substitution of phosphonic or sulfonic acids for the carboxylic acid group also results in loss of incorporation by transpeptidation. Only the sulfonic acid analog of glycine causes inhibition of hydrolysis and this inhibition is lost when serine is included in the reaction. d-Serine is not incorporated by carboxypeptidase Y, and its presence in the reaction mixture does not inhibit the incorporation of the L-isomer.  相似文献   

9.
Edeines are pentapeptide amide antibiotics composed of four nonprotein amino acids, glycine, and polyamine. They exhibit antimicrobial and immunosuppressive activities and are universal inhibitors of translation. Moreover, it was proven that the free ionizable carboxy group in the (2R, 6S, 7R)-2,6-diamino-7-hydroxyazelaic acid moiety is not essential for biological activity of these compounds. In this paper we describe the synthesis of four novel edeine A and D analogues in which the above-mentioned acid residue was replaced with the (3R, 4S)- or (3S, 4S)-4,5-diamino-3-hydroxypentanoic acid moiety. In one compound we also introduced into molecule the 3-N,N-dimethyl derivative of (S)-2,3-diaminopropanoic acid to prevent the transpeptidation process, which results in the loss of biological activity of alpha-isomers of edeines. All peptides were synthesized applying the active ester and azide methods and on the basis of the coupling of suitable N-terminal tripeptides with proper C-terminal dipeptide amides. The activities of the newly obtained edeine analogues against selected strains of bacteria and fungi are also presented.  相似文献   

10.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

11.
Adediran SA  Kumar I  Pratt RF 《Biochemistry》2006,45(43):13074-13082
Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.  相似文献   

12.
Abstract Several monobactams reacted with the serine dd -peptidases of Streptomyces R61 and Actinomadura R39 in a manner similar to that of bicyclic penicillins and cephalosporins. The dissociation constants of the Michaelis complexes formed between the R61 enzyme and sulfazecin (32 μM) and between the R39 peptidase and SQ 26324 (0.35 μM) had the lowest values ever observed with any β-lactam compound, suggesting an excellent fit of these two monobactams with the active sites of the respective enzymes. Azthreonam had a very poor inactivating potency, confirming its high selective reactivity towards the penicillin binding protein No. 3 of Escherichia coli . The Zn2+ dd -peptidase (from Streptomyces albus G) had a high intrinsic resistance to β-lactam compounds whether they possessed a mono- or a bicyclic structure.  相似文献   

13.
Sinorhizobium meliloti strains lacking BacA function are impaired in symbiosis with alfalfa host plants and display altered sensitivities to a number of compounds relative to wild-type strains. With the goal of finding clues to the currently unknown biological function(s) of BacA, we carried out a genetic analysis to determine which amino acids are critical for protein function and to attempt to ascertain whether the multiple phenotypes that result from a bacA-null allele were the result of a common cause or whether BacA has multiple functions. We have created a set of 20 site-directed mutants in which selected individual amino acids in bacA were replaced with glycine residues. The resulting mutants were characterized to determine how the various amino acid changes affected a number of phenotypes associated with loss of BacA function. Mutants H165G, W182G, D198G, and R284G had null phenotypes for all functions assayed, while mutants W57G, S83G, S231G, and K350G were indistinguishable from wild-type strains. The remaining 12 site-directed mutants demonstrate mixed phenotypic characteristics and fall into a number of distinctly different groups. These observations may be consistent with a role for BacA in multiple, nonoverlapping functions.  相似文献   

14.
Production, purification and properties of γ-glutamyltranspeptidase from a newly isolated Bacillus subtilis NX-2 was investigated. At the optimum conditions for enzyme formation, a high level, 3.2 U/ml of γ-GTP was obtained. The extracellular γ-GTP from this strain was purified 111.15-fold to homogeneity from the culture supernatant by acetone precipitation, hydrophobic interaction chromatography and ion exchange chromatography. The purified enzyme was a heterodimer consisting of one large subunit (43 kDa) and one small subunit (32 kDa), and exhibited high activity at 40–60 °C, pH 8.0. It preferred basic amino acids as γ-glutamyl acceptor in transpeptidation, and the stereochemistry of the γ-glutamyl acceptor had no influence on the enzyme activity, which was different from other γ-GTPs reported. Furthermore, it was proved that γ-GTP of this strain could catalyze the transfer of l-glutamine to glycylglycine to synthesize Gln–Gly–Gly, which was promising for the synthesis of valuable γ-glutamyl peptides.  相似文献   

15.
The exocellular DD-carboxypeptidase-endopeptidase of Streptomyces albus G was purified to protein homogeneity and compared with the exocellular DD-carboxypeptidases-transpeptidases of Streptomyces R61 and Actinomadura R39. The S. albus G enzyme, as it is isolated, occurs in two forms. Enzyme I (30% of the total amount) and enzyme II (70% of the total amount) are identical in all respects, except that, by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, enzyme I has an apparent mol. wt. (9000) that is half of that found by molecular-sieve filtration under non-denaturing conditions. Irrespective of the technique used, enzyme II has an apparent mol. wt. of about 18500.  相似文献   

16.
The enzyme dolichyl-phosphate-D-mannose:protein O-D-mannosyltransferase has been solubilized from Saccharomyces cerevisiae membranes and its mannosyltransferase activity demonstrated using short peptides. The specific activity of the protein was enriched 130-fold before it was further purified by native and SDS gel chromatography. A 92-kDa band correlated well with the enzyme activity; an antibody raised against this protein precipitated the mannosyltransferase. The 92-kDa band was hydrolysed to 84 kDa after treatment with endoglycosidase F, indicating that the protein is a glycoprotein which may contain four carbohydrate chains. The purified mannosyltransferase is distinctly influenced in transfer specificity by amino acids next to serine and threonine within the acceptor peptides. Thus acidic amino acids strongly inhibit acceptor activity as do glycine and proline residues as amino-terminal and carboxy-terminal neighbours, respectively.  相似文献   

17.
The specificity of the Streptomyces R61 penicillin-sensitive D-Ala-D-Ala peptidase has been re-examined with the help of synthetic substrates. The products of the transpeptidation reactions obtained with Gly-L-Xaa dipeptides as acceptor substrates are themselves poor substrates of the enzyme. This is in apparent contradiction with the classically accepted specificity rules for D-Ala-D-Ala peptidases. The Gly-L-Xaa dipeptide is regenerated by both the hydrolysis and transpeptidation reactions. The latter reaction is observed when another Gly-L-Xaa peptide or D-Alanine are supplied as acceptors. Utilization of substrates in which the terminal -COO(-) group has been esterified or amidated shows that a free carboxylate is not an absolute prerequisite for activity. The results are discussed in the context of the expected reversibility of the transpeptidation reaction.  相似文献   

18.
Thermoanaerobacter brockii, T. ethanolicus, T. thermohydrosulfuricus, T. finnii, and Thermoanaerobacter strain SEBR 5268 (an isolate from an oil-producing well) were studied for their ability to oxidize proteinaceous compounds that included gelatin, peptides, and casamino acids. All bacteria tested used peptides and amino acids, but only slightly. However, in the presence of thiosulfate all the Thermoanaerobacter species showed a substantial improvement in growth and/or the production of acetate, isovalerate, isobutyrate, and sulfide. Propionate was a minor product of peptide or amino acid oxidation. The reduction of thiosulfate during growth on peptides by members of the Thermoanaerobacter species is a trait that closely resembles that of archaeal hyperthermophiles during growth on peptides and amino acids with elemental sulfur as electron acceptor.  相似文献   

19.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

20.
Production of various extracellular enzymes (the beta-lactamases from Streptomyces albus G, Streptomyces cacaoi, Actinomadura R39, and the DD-carboxypeptidase from Streptomyces R61) by genetically engineered Streptomyces lividans TK24 in Lennox broth medium reached a maximum after 36 to 48 h. Subsequently, the enzyme activity drastically decreased probably due to an increased pH value and the production of an inactivator by Streptomyces lividans. Protease activity did not seem to play a major role. The increased pH and inactivator synthesis are related to amino acid catabolism and generally result in cellularlysis. The use of a medium where the catabolism of amino acids was made less likely by the presence of glucose and NH(4)Cl and by buffering at pH 7.4 considerably inproved the yield. Furthermore, the water activity of the medium seemed to be an important parameter for the production of extracellular proteins by genetically engineered Streptomyces. Better production was observed when the water activity was decreased to 0.96-0.98 by addition of sucrose.Under those conditions, the concentration of extracellular enzyme reached about 0.3 g (1 g in the best case)/L of culture supernantant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号