首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Autoregulation of the human liver X receptor alpha promoter   总被引:4,自引:0,他引:4       下载免费PDF全文
Previous work has implicated the nuclear receptors liver X receptor alpha (LXR alpha) and LXR beta in the regulation of macrophage gene expression in response to oxidized lipids. Macrophage lipid loading leads to ligand activation of LXRs and to induction of a pathway for cholesterol efflux involving the LXR target genes ABCA1 and apoE. We demonstrate here that autoregulation of the LXR alpha gene is an important component of this lipid-inducible efflux pathway in human macrophages. Oxidized low-density lipoprotein, oxysterols, and synthetic LXR ligands induce expression of LXR alpha mRNA in human monocyte-derived macrophages and human macrophage cell lines but not in murine peritoneal macrophages or cell lines. This is in contrast to peroxisome proliferator-activated receptor gamma (PPAR gamma)-specific ligands, which stimulate LXR alpha expression in both human and murine macrophages. We further demonstrate that LXR and PPAR gamma ligands cooperate to induce LXR alpha expression in human but not murine macrophages. Analysis of the human LXR alpha promoter led to the identification of multiple LXR response elements. Interestingly, the previously identified PPAR response element (PPRE) in the murine LXR alpha gene is not conserved in humans; however, a different PPRE is present in the human LXR 5'-flanking region. These results have implications for cholesterol metabolism in human macrophages and its potential to be regulated by synthetic LXR and/or PPAR gamma ligands. The ability of LXR alpha to regulate its own promoter is likely to be an integral part of the macrophage physiologic response to lipid loading.  相似文献   

5.
Fatty acid-binding proteins are cytosolic fatty acid chaperones, and the adipocyte isoform, aP2, plays an important role in obesity and glucose metabolism. Recently, this protein has been detected in macrophages where it strongly contributes to the development of atherosclerosis. Here, we investigated the role of aP2 in macrophage biology and the molecular mechanisms underlying its actions. We demonstrate that aP2-deficient macrophages display defects in cholesterol accumulation and alterations in pro-inflammatory responsiveness. Deficiency of aP2 alters the lipid composition in macrophages and enhances peroxisome proliferator-activated receptor gamma activity, leading to elevated CD36 expression and enhanced uptake of modified low density lipoprotein. The increased peroxisome proliferator-activated receptor gamma activity in aP2-deficient macrophages is also accompanied by a significant stimulation of the liver X receptor alpha-ATP-binding cassette transporter A1-mediated cholesterol efflux pathway. In parallel, aP2-deficient macrophages display reduced IkappaB kinase and NF-kappaB activity, resulting in suppression of inflammatory function including reduced cyclooxygenase-2 and inducible nitric-oxide synthase expression and impaired production of inflammatory cytokines. Our results demonstrate that aP2 regulates two central molecular pathways to coordinate macrophage cholesterol trafficking and inflammatory activity.  相似文献   

6.
Oxidative stress, inflammation and altered cholesterol metabolism and levels are among the pathogenetic mechanisms of cognitive impairment that may accompany aging. Within the research area of hypercholesterolemia and age-related disease processes, the molecular mechanisms of cholesterol interaction with the inflammatory cells of the macrophage lineage are yet to be elucidated. We thus investigated the effect of both non-oxidized and oxidized cholesterol on monocytic cell differentiation and foam cell formation, as it occurs within vascular lesions during progression of atherosclerosis. In vitro experiments performed on human U937 promonocytic cells showed that a biologically representative mixture of oxysterols markedly stimulated CD36 expression and synthesis. In contrast, non-oxidized cholesterol did not exert any effect on CD36 mRNA and protein levels. Furthermore, the oxysterol-induced up-regulation of CD36 appeared to be based on the subsequent activation of protein kinase Cdelta (PKCdelta), extracellular signal-regulated kinase 1/2 (ERK1/2) and peroxisome proliferator-activated receptor gamma (PPARgamma). Cells overexpressing CD36 were indeed able to actively take up oxidized low-density lipoproteins, and become foam cells. The essential role of ERK pathway and CD36 receptor in oxysterol-induced foam cell formation was proved by the prevention of the latter event when monocytic cells were incubated in the presence of MEK1/2 selective inhibitor or anti-CD36 specific antibody. These experimental findings point to cholesterol oxidation as an essential reaction for this sterol to exert cellular stress and tissue damage in age-related diseases in which inflammation represents a main driving force.  相似文献   

7.
8.
9.
Macrophage-derived foam cells play an important role in atherosclerotic lesions. Oxidized low-density lipoprotein (Ox-LDL) induces macrophage proliferation via production of GM-CSF in vitro. This study investigated the effects of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), a natural ligand for peroxisome proliferator-activated receptor gamma, on macrophage proliferation. Mouse peritoneal macrophages and RAW264.7 cells were used for proliferation study and reporter gene assay, respectively. Twenty microgram per milliliter of Ox-LDL induced [3H]thymidine incorporation in mouse peritoneal macrophages, and 15d-PGJ(2) inhibited Ox-LDL-induced [3H]thymidine incorporation in a dose-dependent manner. Ox-LDL increased GM-CSF release and GM-CSF mRNA expression, and activated GM-CSF gene promoter, all of which were prevented by 15d-PGJ(2) or 2-cyclopenten-1-one, a cyclopentenone ring of 15d-PGJ(2). The suppression of GM-CSF promoter activity by 15d-PGJ(2) and 2-cyclopenten-1-one was mediated through reduction of NF-kappaB binding to GM-CSF promoter. These results suggest that 15d-PGJ(2) inhibits Ox-LDL-induced macrophage proliferation through suppression of GM-CSF production via NF-kappaB inactivation.  相似文献   

10.
Adipophilin is a sensitive marker for lipid loading in human blood monocytes.   总被引:18,自引:0,他引:18  
Adipophilin, a marker of lipid accumulation initially described in adipocytes, was recently shown to be induced in macrophage foam cells. We found that even freshly isolated blood monocytes express adipophilin and that the amount of adipophilin protein is variable in monocytes from different healthy individuals. However, the physiological expression of adipophilin does not correlate with the levels of free fatty acids, cholesterylesters or free cholesterol. Enzymatically modified low-density lipoprotein (E-LDL) induces rapid foam cell formation in monocytes and upregulates adipophilin mRNA and protein within 2 h of incubation. This rapid induction of adipophilin is accompanied by a significant increase of free fatty acids in monocytes incubated with E-LDL. Adipophilin facilitates the uptake of free fatty acids, and here we demonstrate that free fatty acids increase is related to the early upregulation of adipophilin expression in blood monocytes. Fatty acids are ligands for peroxisome proliferator-activated receptor-gamma (PPARgamma), and the upregulation of adipophilin mRNA by PPARgamma agonists like 15d-PGJ(2) and ciglitazone indicates that PPARgamma may mediate the induction of adipophilin expression in human blood monocytes.  相似文献   

11.
Both lipid accumulation and inflammatory response in lesion macrophages fuel the progression of atherosclerosis, leading to high mortality of cardiovascular disease. A therapeutic strategy concurrently targeting these two risk factors is promising, but still scarce. Oridonin, the bioactive medicinal compound, is known to protect against inflammatory response and lipid dysfunction. However, its effect on atherosclerosis and the underlying molecular mechanism remain elusive. Here, we showed that oridonin attenuated atherosclerosis in hyperlipidemic ApoE knockout mice. Meanwhile, we confirmed the protective effect of oridonin on the oxidized low-density lipoprotein (oxLDL)-induced foam macrophage formation, resulting from increased cholesterol efflux, as well as reduced inflammatory response. Mechanistically, the network pharmacology prediction and further experiments revealed that oridonin dramatically facilitated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), thereby regulating liver X receptor-alpha (LXRα)-induced ATP-binding cassette transporter A1 (ABCA1) expression and nuclear factor NF-kappa-B (NF-κB) translocation. Antagonist of PPARγ reversed the cholesterol accumulation and inflammatory response mediated by oridonin. Besides, RNA sequencing analysis revealed that fatty acid binding protein 4 (FABP4) was altered responding to lipid modulation effect of oridonin. Overexpression of FABP4 inhibited PPARγ activation and blunted the benefit effect of oridonin on foam macrophages. Taken together, oridonin might have potential to protect against atherosclerosis by modulating the formation and inflammatory response in foam macrophages through FABP4/PPARγ signalling.  相似文献   

12.
Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARγ and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARγ and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARγ and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.  相似文献   

13.
14.
15.
Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.  相似文献   

16.
Hypercholesterolemia is one of the most important risk factors for atherosclerosis, and tomato lycopene has been suggested to have beneficial effects against such a disease, although the exact molecular mechanism is unknown. We tested the hypothesis that lycopene may exert its antiatherogenic role through changes in cholesterol metabolism. Incubation of THP-1 cells with lycopene (0.5–2 μM) dose-dependently reduced intracellular total cholesterol. Such an effect was associated with a decrease in reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase expression and with an increase in ABCA1 and caveolin-1 (cav-1) expressions. In addition, lycopene enhanced RhoA levels in the cytosolic fraction, activating peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha expressions. Concomitant addition of lycopene and the PPARγ inhibitor GW9662 or lycopene and mevalonate blocked the carotenoid-induced increase in ABCA1 and cav-1 expressions. These results imply a potential role of lycopene in attenuating foam cell formation and, therefore, in preventing atherosclerosis by a cascade mechanism involving inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, RhoA inactivation and subsequent increase in PPARγ and liver X receptor alpha activities and enhancement of ABCA1 and cav-1 expressions.  相似文献   

17.
The peroxisome proliferator-activated receptor gamma (PPAR gamma) has recently been implicated in the pathogenesis of inflammatory bowel disease (IBD) and colon cancer. The observation that PPAR gamma agonists, through immune modulation, protect against inflammatory processes in the intestine justified their expedient evaluation in the clinical management of IBD. PPAR gamma agonists are reported to have both tumor-promoting and -inhibiting effects in models of colon cancer. These differences can, in part, be explained by PPAR gamma-independent effects of PPAR gamma agonists and by differences in the models used. Because it is still unclear how PPAR gamma impacts on colon cancer, careful monitoring of patients receiving PPAR gamma agonists and additional basic research is indicated before recommendations on the use of PPAR gamma ligands in colon cancer can be made.  相似文献   

18.
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.  相似文献   

19.
20.
Elevated levels of the hormone resistin, which is secreted by fat cells, are proposed to cause insulin resistance and to serve as a link between obesity and type 2 diabetes. In this report we show that resistin expression is significantly decreased in the white adipose tissue of several different models of obesity including the ob/ob, db/db, tub/tub, and KKA(y) mice compared with their lean counterparts. Furthermore, in response to several different classes of antidiabetic peroxisome proliferator-activated receptor gamma agonists, adipose tissue resistin expression is increased in both ob/ob mice and Zucker diabetic fatty rats. These data demonstrate that experimental obesity in rodents is associated with severely defective resistin expression, and decreases in resistin expression are not required for the antidiabetic actions of peroxisome proliferator-activated receptor gamma agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号