首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC alpha 1 and alpha 2 mRNAs is developmentally regulated in differentiating C2C12 myogenic cells. The alpha 1 mRNA is not detectable in the myoblast form of C2C12 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the alpha 2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.  相似文献   

2.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

3.
The aim of this study is to determine if the Odc1 gene, which encodes ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, is directly regulated by the androgen receptor (AR) in skeletal muscle myoblasts and if Odc1 regulates myoblast proliferation and differentiation. We previously showed that expression of Odc1 is decreased in muscle from AR knockout male mice. In this study, we show in vivo that Odc1 expression is also decreased >60% in muscle from male muscle-specific AR knockout mice. In normal muscle homeostasis, Odc1 expression is regulated by age and sex, reflecting testosterone levels, as muscle of adult male mice expresses high levels of Odc1 compared with age-matched females and younger males. In vitro, expression of Odc1 is 10- and 1.5-fold higher in proliferating mouse C(2)C(12) and human skeletal muscle myoblasts, respectively, than in differentiated myotubes. Dihydrotestosterone increases Odc1 levels 2.7- and 1.6-fold in skeletal muscle cell myoblasts after 12 and 24 h of treatment, respectively. Inhibition of ODC activity in C(2)C(12) myoblasts by α-difluoromethylornithine decreases myoblast number by 40% and 66% following 48 and 72 h of treatment, respectively. In contrast, overexpression of Odc1 in C(2)C(12) myoblasts results in a 27% increase in cell number vs. control when cells are grown under differentiation conditions for 96 h. This prolonged proliferation is associated with delayed differentiation, with reduced expression of the differentiation markers myogenin and Myf6 in Odc1-overexpressing cells. In conclusion, androgens act via the AR to upregulate Odc1 in skeletal muscle myoblasts, and Odc1 promotes myoblast proliferation and delays differentiation.  相似文献   

4.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

5.
Thrombin exerts a number of effects on skeletal myoblasts in vitro. It stimulates proliferation and intracellular calcium mobilization and inhibits differentiation and apoptosis induced by serum deprivation in these cells. Many cellular responses to thrombin are mediated by protease-activated receptor-1 (PAR-1). Expression of PAR-1 is present in mononuclear myoblasts in vitro, but repressed when fusion occurs to form myotubes. In the current study, we used PAR-1-null mice to determine which of thrombin's effects on myoblasts are mediated by PAR-1. Thrombin inhibited fusion almost as effectively in cultures prepared from the muscle of PAR-1-null myoblasts as in cultures prepared from wild-type mice. Apoptosis was inhibited as effectively in PAR-1-null myoblasts as in wild-type myoblasts. These effects in PAR-1-null myoblasts were mediated by a secreted inhibitor of apoptosis and fusion, as demonstrated previously for normal rat myoblasts. Thrombin failed to induce an intracellular calcium response in PAR-1-null myoblast cultures, although these cells were able to mobilize intracellular calcium in response to activation of other receptors. PAR-1-null myoblasts also failed to proliferate in response to thrombin. These results demonstrate that thrombin's effects on myoblast apoptosis and fusion are not mediated by PAR-1 and that PAR-1 is the only thrombin receptor capable of inducing proliferation and calcium mobilization in neonatal mouse myoblasts.  相似文献   

6.
CLIC5 (chloride intracellular channel 5) is a CLIC (chloride intracellular channel) with various functions. Its high expression in skeletal muscle and association with actin‐based cytoskeleton suggests that it may play an important role in muscle tissue. This study was conducted to examine whether CLIC5 regulates the proliferation and differentiation of C2C12 myoblasts into myotubes. Differentiation of C2C12 myoblasts induced by switching to a differentiation culture medium was accompanied by a significant increase of CLIC5 protein expression level. Constitutive overexpression of CLIC5 was associated with reduced cell proliferation and more cells from G2/M phase into G0/G1 phase, followed by increased number and size of myotubes and up‐regulation of muscle‐specific proteins of myosin heavy chain, myogenin and desmin. These results demonstrate that CLIC5 is involved in C2C12 proliferation and myogenic differentiation in vitro.  相似文献   

7.
Myogenesis is accompanied by an intensive metabolic remodeling. We investigated the mitochondrial reactive oxygen species (ROS) generation at different levels of skeletal muscle differentiation: in C2C12 myoblasts, in C2C12 myotubes and in adult mouse skeletal muscle. Differentiation was accompanied by an increase in mitochondrial content and respiratory chain activity. The detected ROS production levels correlated with mitochondrial content, being the lowest in the myoblasts. Unlike the adult skeletal muscle, myoblast ROS production was significantly stimulated by the complex I inhibitor rotenone. Our results show that mitochondria are an important ROS source in skeletal muscle cells. The substantial changes in mitochondrial ROS synthesis during skeletal muscle differentiation can be explained by intensive bioenergetic remodeling.  相似文献   

8.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础.  相似文献   

9.
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.  相似文献   

10.
11.
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.  相似文献   

12.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in diverse biological processes including skeletal muscle development. MiR-214 is an miRNA that is differentially expressed in porcine embryonic muscle and adult skeletal muscle, suggesting that miR-214 may be related to embryonic myogenesis. In this study, the myoblast cell line C2C12 was used for functional analysis of miR-214 in vitro. The results showed that miR-214 was expressed both in myoblasts and in myotubes and was upregulated during differentiation. After treatment with an miR-214 inhibitor and culturing in differentiation medium, myoblast differentiation was repressed, as indicated by the significant downregulation of expression of the myogenic markers myogenin and myosin heavy chain (MyHC). Interestingly, myoblast proliferation was also repressed when cells were transfected with an miR-214 inhibitor and cultured in growth medium by real-time proliferation assay and cell cycle analysis. Our results showed that miR-214 regulates both proliferation and differentiation of myoblasts depending on the conditions.  相似文献   

13.
Fusion of mononucleated myoblasts to generate multinucleated myotubes is a critical step in skeletal muscle development. Filopodia, the actin cytoskeleton based membrane protrusions, have been observed early during myoblast fusion, indicating that they could play a direct role in myogenic differentiation. The control of filopodia formation in myoblasts remains poorly understood. Here we show that the expression of IRSp53 (Insulin Receptor Substrate protein 53kDa), a known regulator of filopodia formation, is down-regulated during differentiation of both mouse primary myoblasts and a mouse myoblast cell line C2C12. Over-expression of IRSp53 in C2C12 cells led to induction of filopodia and decrease in cell adhesion, concomitantly with inhibition of myogenic differentiation. In contrast, knocking down the IRSp53 expression in C2C12 cells led to a small but significant increase in myotube development. The decreased cell adhesion of C2C12 cells over-expressing IRSp53 is correlated with a reduction in the number of vinculin patches in these cells. Mutations in the conserved IMD domain (IRSp53 and MIM (missing in metastasis) homology domain) or SH3 domain of IRSp53 abolished the ability of this protein to inhibit myogenic differentiation and reduce cell adhesion. Over-expression of the IMD domain alone was sufficient to decrease the cell-extracellular matrix adhesion and to inhibit myogenesis in a manner dependent on its function in membrane shaping. Based on our data, we propose that IRSp53 is a negative regulator of myogenic differentiation which correlates with the observed down regulation of IRSp53 expression during myoblast differentiation to myotubes.  相似文献   

14.
Although protein kinase C (PKC) has been shown to participate in skeletal myogenic differentiation, the functions of individual isoforms of PKC in myogenesis have not been completely elucidated. These studies focused on the role of nPKC straight theta, an isoform of the PKC family whose expression has been shown to be regulated by commitment to the myogenic lineage, myogenic differentiation and innervation. We used the myogenic cell line C(2)C(12) as a tissue culture model system to explore the role of nPKC straight theta in the formation of multinucleated myotubes. We examined endogenous levels of nPKC straight theta in C(2)C(12) cells and showed that it is expressed at low levels in myoblasts compared to mouse skeletal muscle and that expression is maintained in myotubes. We overexpressed nPKC straight theta in C(2)C(12) myoblasts and examined the ability of overexpressing cells to differentiate into myotubes. Using an nPKC straight theta - green fluorescent protein (GFP) chimera to detect transfected myoblasts, we showed that overexpressed nPKC straight theta-GFP translocates to the plasma membrane in response to phorbol ester treatment of myoblast cultures in situ. nPKC straight theta-GFP was found to be completely extracted into the detergent-soluble fraction of cell lysates and was stably expressed throughout the extent of differentiation into myotubes. No difference was seen in the ability of myoblasts either overexpressing nPKC straight theta - GFP or GFP alone to form myotubes. These studies demonstrate that overexpression of nPKC straight theta does not interfere with fusion of myoblasts into myotubes suggesting that nPKC straight theta activity is not inhibitory for myogenesis. These studies also demonstrate a method for transfecting myoblasts and identifying differentiated cells that overexpress nPKC straight theta-GFP for investigating the function of nPKC straight theta in living myotubes.  相似文献   

15.
The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC α1 and α2 mRNAs is developmentally regulated in differentiating C2Cl2 myogenic cells. The α1 mRNA is not detectable in the myoblast form of C2Cl2 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the α2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.  相似文献   

16.
17.
18.
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-β-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.  相似文献   

19.
The development of skeletal muscle is a complex process involving the proliferation, differentiation, apoptosis, and changing of muscle fiber types in myoblasts. Many reports have described the involvement of microRNAs in the myogenesis of myoblasts. In this study, we found that the expression of miR-152 was gradually down-regulated during myoblast proliferation, but gradually up-regulated during the differentiation of myoblasts. Transfection with miR-152 mimics restrained cell proliferation and decreased the expression levels of cyclin E, CDK4, and cyclin D1, but promoted myotube formation and significantly increased the mRNA expression levels of MyHC, MyoD, MRF4, and MyoG in C2C12 myoblasts. However, treatment with miR-152 inhibitors promoted cell proliferation and restrained differentiation. Moreover, over-expression of miR-152 significantly decreased E2F3 production in C2C12 myoblasts. A luciferase assay confirmed that miR-152 could bind to the 3′ UTR of E2F3. In conclusion, this study showed that miR-152 inhibited proliferation and promoted myoblast differentiation by targeting E2F3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号