首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

2.
Bone marrow-derived stem cells have the ability to migrate to sites of tissue damage and participate in tissue regeneration. The number of circulating stem cells has been shown to be a key parameter in this process. Therefore, stimulating the mobilization of bone marrow stem cells may accelerate tissue regeneration in various animal models of injury. In this study we investigated the effect of the bone marrow stem cells mobilizer StemEnhance (SE), a water-soluble extract of the cyanophyta Aphanizomenon flos-aquae (AFA), on hematopoietic recovery after myeloablation as well as recovery from cardiotoxin-induced injury of the anterior tibialis muscle in mice. Control and SE-treated female mice were irradiated, and then transplanted with GFP+ bone marrow stem cells and allowed to recover. Immediately after transplant, animals were gavaged daily with 300 mg/kg of SE in PBS or a PBS control. After hematopoietic recovery (23 days), mice were injected with cardiotoxin in the anterior tibialis muscle. Five weeks later, the anterior tibialis muscles were analyzed for incorporation of GFP+ bone marrow-derived cells using fluorescence imaging. SE significantly enhanced recovery from cardiotoxin-injury. However, StemEnhance did not affect the growth of the animal and did not affect hematopoietic recovery after myeloablation, when compared to control. This study suggests that inducing mobilization of stem cells from the bone marrow is a strategy for muscle regeneration.  相似文献   

3.
Connective tissue growth factor (CTGF/CCN-2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin-angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin-II and its transducer receptor AT-1. The use of AT-1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT-1 receptor blockade on CTGF-dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF-mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK-1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF-mediated increase of ECM molecules, α-SMA and ERK-1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK-1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies.  相似文献   

4.
The blood supply of the periosteum of the human tibia was investigated by anatomical dissection of 12 lower extremities which were filled with injection mass. By division of the tibia into 4 segments (proximal and distal fifths; proximal and distal diaphysis) a general supplying system of the periosteum was found. The proximal fifth of the tibial periosteum is nourished by branches of the arteriae recurrentes tibiales anterior et posterior and the aa. inferiores medialis et lateralis genus. At the proximal diaphysis (next three tenths of the tibia) periosteal branches arise from the aa. tibialis anterior and posterior, whereas the distal diaphysis is nourished exclusively by semicircular vessels of the a. tibialis anterior which twine around the bone and merge with each other at the facies medialis. Concerning the periosteal blood supply of the distal fifth of the tibia, two different types were found. In two thirds of the cases the lateral side was nourished by branches of the a. tibialis anterior, which are supported by vessels from the a. fibularis. In one third the latter branch was absent so that the rami periostales arising from the a. tibialis anterior nourished the lateral aspect of the distal tibia alone. The dorsal region was supplied in all cases by rami of the a. fibularis and a. tibialis posterior. On the medial side the periosteal nourishment is ensured only by anastomosis. Branches of the a. tibialis anterior supply the facies lateralis and facies posterior where it is supported by vessels of the a. tibialis posterior and in a minor region of rami of the a. fibularis (distal) and a. poplitea (proximal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We investigated the influence of inter-electrode spacing on the degree of crosstalk contamination in surface electromyographic (sEMG) signals in the tibialis anterior (target muscle), generated by the triceps surae (crosstalk muscle), using bar and disk electrode arrays. The degree of crosstalk contamination was assessed for voluntary constant-force isometric contractions and for dynamic contractions during walking. Single-differential signals were acquired with inter-electrode spacing ranging from 5 mm to 40 mm. Additionally, double differential signals were acquired at 10 mm spacing using the bar electrode array. Crosstalk contamination at the target muscle was expressed as the ratio of the detected crosstalk signal to that of the target muscle signal. The crosstalk contamination ratio approached a mean of 50% for the 40 mm spacing for triceps surae muscle contractions at 80% MVC and tibialis anterior muscle contractions at 10% MVC. For single differential recordings, the minimum crosstalk contamination was obtained from the 10 mm spacing. The results showed no significant differences between the bar and disk electrode arrays. During walking, the crosstalk contamination on the tibialis anterior muscle reached levels of 23% for a commonly used 22 mm spacing single-differential disk sensor, 17% for a 10 mm spacing single-differential bar sensor, and 8% for a 10 mm double-differential bar sensor. For both studies the effect of electrode spacing on crosstalk contamination was statistically significant. Crosstalk contamination and inter-electrode spacing should therefore be a serious concern in gait studies when the sEMG signal is collected with single differential sensors. The contamination can distort the target muscle signal and mislead the interpretation of its activation timing and force magnitude.  相似文献   

6.
Injection of serotonin (5-hydroxytryptamine) induced a marked decrease in the level of glucose 1,6-diphosphate (Glc-1,6-P2) in the rat tibialis anterior muscle. Concomitant to the decrease in Glc-1,6-P2, the potent activator of phosphofructokinase and phosphoglucomutase, the activities of both these enzymes were markedly reduced by serotonin. The level of Glc-1,6-P2 and the activities of phosphofructokinase and phosphoglucomutase increased with age in the tibialis anterior muscle and the effect of serotonin was more pronounced in the older animals. Serotonin also induced a significant increase in the level of cyclic GMP in muscle. The serotonin-induced changes in the normal muscle mimic the changes in carbohydrate metabolism we found previously in muscular dystrophy.  相似文献   

7.
During terrestrial locomotion, limb muscles must generate mechanical work and stabilize joints against the ground reaction force. These demands can require high force production that imposes substantial loads on limb bones. To better understand how muscle contractile function influences patterns of bone loading in terrestrial locomotion, and refine force platform equilibrium models used to estimate limb bone safety factors, we correlated in vivo recordings of femoral strain with muscle activation and strain in a major propulsive hindlimb muscle, flexor tibialis internus (FTI), of a species with a published model of hindlimb force production (river cooter turtles, Pseudemys concinna). Electromyography (EMG) recordings indicate FTI activity prior to footfall that continues through approximately 50% of the stance phase. Large EMG bursts occur just after footfall when the muscle has reached its maximum length and is beginning to actively shorten, concurrent with increasing compressive strain on the anterior femur. The FTI muscle shortens through 35% of stance, with mean fascicle shortening strains reaching 14.0 ± 5.4% resting length (L0). At the time of peak compressive strains on the femur, the muscle fascicles remain active, but fascicles typically lengthen until mid‐stance as the knee extends. Influenced by the activity of the dorsal knee extensor femorotibialis, the FTI muscle continues to passively lengthen simultaneously with knee extension and a shift to tensile axial strain on the anterior femur at approximately 40% of stance. The near coincidence in timing of peak compressive bone strain and peak muscle shortening (5.4 ± 4.1% stance) indicates a close correlation between the action of the hip extensor/knee flexor, FTI, and femoral loading in the cooter hindlimb. In the context of equilibrium models of limb bone loading, these results may help explain differences in safety factor estimates observed between previous force platform and in vivo strain analyses in cooters. J. Morphol. 274:1060–1069, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
We supposed that the triglyceride content might be used as a cellular marker of muscle fiber activity and for the first time analyzed the triglyceride content in the fast- and slow-twitch muscle fibers of m. soleus and m. tibialis anterior under conditions of 7-day rat hindlimb suspension. Although the hindlimb suspension led to decrease of triglyceride content in the fast-twitch fibers of m. soleus and slow-twitch fibers of m. tibialis anterior, these differences were not significant. In spite of this the obtained data do not contradict our initial hypothesis.  相似文献   

9.
Understanding the relationship between physical exercise, reactive oxygen species and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Unbalanced ROS levels can lead to oxidation of cellular macromolecules and a major class of protein oxidative modification is carbonylation. The aim of this investigation was to study muscle protein expression and carbonylation patterns in trained and untrained animal models. We analyzed two muscles characterized by different metabolisms: tibialis anterior and soleus. Whilst tibialis anterior is mostly composed of fast-twitch fibers, the soleus muscle is mostly composed of slow-twitch fibers. By a proteomic approach we identified 15 protein spots whose expression is influenced by training. Among them in tibialis anterior we observed a down-regulation of several glycolitic enzymes. Concerning carbonylation, we observed the existence of a high basal level of protein carbonylation. Although this level shows some variation among individual animals, several proteins (mostly involved in energy metabolism, muscle contraction, and stress response) appear carbonylated in all animals and in both types of skeletal muscle. Moreover we identified 13 spots whose carbonylation increases after training.  相似文献   

10.
11.
In this study we examined the influence of complete spinal cord injury (SCI) on affected skeletal muscle morphology within 6 months of SCI. Magnetic resonance (MR) images of the leg and thigh were taken as soon as patients were clinically stable, on average 6 weeks post injury, and 11 and 24 weeks after SCI to assess average muscle cross-sectional area (CSA). MR images were also taken from nine able-bodied controls at two time points separated from one another by 18 weeks. The controls showed no change in any variable over time. The patients showed differential atrophy (P = 0.0001) of the ankle plantar or dorsi flexor muscles. The average CSA of m. gastrocnemius and m. soleus decreased by 24% and 12%, respectively (P = 0.0001). The m. tibialis anterior CSA showed no change (P = 0.3644). As a result of this muscle-specific atrophy, the ratio of average CSA of m. gastrocnemius to m. soleus, m. gastrocnemius to m. tibialis anterior and m. soleus to m. tibialis anterior declined (P = 0.0001). The average CSA of m, quadriceps femoris, the hamstring muscle group and the adductor muscle group decreased by 16%, 14% and 16%, respectively (P< or =0.0045). No differential atrophy was observed among these thigh muscle groups, thus the ratio of their CSAs did not change (P = 0.6210). The average CSA of atrophied skeletal muscle in the patients was 45-80% of that of age- and weight-matched able-bodied controls 24 weeks after injury. In conclusion, the results of this study suggest that there is marked loss of contractile protein early after SCI which differs among affected skeletal muscles. While the mechanism(s) responsible for loss of muscle size are not clear, it is suggested that the development of muscular imbalance as well as diminution of muscle mass would compromise force potential early after SCI.  相似文献   

12.
Summary Autoradiographic experiments using 3H-thymidine were designed to analyse cell proliferation which occurs in skeletal muscle after denervation and after tenotomy. In mouse tibialis anterior and tongue muscles during the first 24 h after denervation or tenotomy labelling levels were low and did not differ significantly from sham operated control muscles. By 48 h after denervation and tenotomy of tibialis anterior muscles, increased levels of labelling occurred in both muscle and connective tissue nuclei. Daily pulse labelling for 7 days after denervation produced a labelling level which was 8 times that of sham operated controls, 25–30% of the total nuclear population being labelled. Denervated muscles had twice the level of labelling compared to tenotomised muscles. These results provide conclusive evidence that both denervation and tenotomy stimulate cell proliferation in skeletal muscle and it is suggested that the increased numbers of labelled muscle nuclei are likely to be the result of mitotic activity in muscle satellite cells.  相似文献   

13.
Fractures of osteoporotic vertebral bodies are increasingly stabilized with bone cement. The effects of vertebral-body stiffness before and after augmentation with bone cement and of wedge-shaped vertebral body fractures on intradiscal pressure are insufficiently known. In a finite element model of the lumbar spine the elastic modulus of cancellous bone as well as the amount and the elastic modulus of bone cement were varied and the dependency of intradiscal pressure on these parameters was calculated. In addition, a wedge-shaped vertebral-body fracture was simulated. The bulge of the vertebral-body endplate and thus the intradiscal pressure depends strongly on the grade of osteoporosis in the vertebral body. The influence of amount and elastic modulus of bone cement on intradiscal pressure is small. A wedge-shaped vertebral-body fracture causes an anterior shift of upper-body centre of gravity. If this shift is not compensated, it leads to an increased flexion moment that has to be balanced by muscle forces. In addition, this shift leads to a stronger increase of intradiscal pressure than the augmentation of the vertebral body with bone cement.  相似文献   

14.
The aim of this study was to determine whether muscle fibre degeneration brought about by chronic lowfrequency electrical stimulation was related to the pattern and frequency of stimulation. Rabbit fast-twitch muscles, tibialis anterior and extensor digitorum longus, were stimulated for 9 days with pulse trains ranging in frequency from 1.25 Hz to 10 Hz. Histological data from these muscles were analysed with multivariate statistical techniques. At the lower stimulation frequencies there was a significantly lower incidence of degenerating muscle fibres. Fibres that reacted positively with an antineonatal antibody were most numerous in the sections that revealed the most degeneration. The dependence on frequency was generally similar for the two muscles, but the extensor digitorum longus muscles showed more degeneration than the tibialis anterior at every frequency. Muscles subjected to 10 Hz intermittent stimulation showed significantly less degeneration than muscles stimulated with 5 Hz continuously, although the aggregate number of impulses delivered was the same. The incidence of degeneration in the extensor digitorum longus muscles stimulated at 1.25 Hz was indistinguishable from that in control, unstimulated muscles; for the tibialis anterior muscles, this was also true for stimulation at 2.5 Hz. We conclude that damage is not an inevitable consequence of electrical stimulation. The influence of pattern and frequency on damage should be taken into account when devising neuromuscular stimulation régimes for clinical use.  相似文献   

15.
The reported experiments were carried out on male Wistar rats. Under general anaesthesia with chloral hydrate in situ physiological preparations were made consisting of sciatic nerve and anterior tibialis muscle. Physostigmine was injected subcutaneously and was followed after from 15 to 60 minutes by intravenous injection of DDVP or phospholine. Physostigmine effect on the blockade of tetanic muscular contractions was studied after administration of these organophosphate inhibitors of acetylcholinesterase. At the same time, the effect of these substances on acetylcholinesterase was determined in the skeletal muscle. It was found that physostigmine in a dose of 125 microgram/kg protected the tibialis muscle against the development of blockade of tetanic response. The protective effect was greatest when the time between physostogmine injection and the subsequent administration of these organophosphate inhibitors was 30--40 minutes. In the same observation period the activity of AChE in the tibialis muscle of rats was found to be highest after physostigmine injection before administration of DDVP or phospholine.  相似文献   

16.
In this paper, a visco-hyperelastic skeletal muscle model is developed. The constitutive relation is based on the definition of a Helmholtz free energy function. It is assumed that the Helmholtz energy can be decomposed into volumetric and isochoric parts; furthermore, the isochoric energy can be decoupled into hyperelastic and viscous parts. The model developed involves 14 material parameters and its performance is evaluated by comparing the finite element simulation results with the published experimental studies on the New Zealand white rabbit tibialis anterior muscle. Results show that this model is able to describe the visco-hyperelastic behaviour of both passive and active skeletal muscle tissues under high strain rates (10/s and 25/s).  相似文献   

17.
The effect of electricallys timulating the tibialis anterior muscle on the stretch reflex of the soleus muscle in normal subjects and subjects with spasticity is investigated. Stimulation of the tibialis anterior just prior to the onset of a mechanical disturbance, which causes a stretch in the soleus, inhibits the stretch reflex of the soleus in normal subjects and may inhibit clonus in subjects with spasticity.  相似文献   

18.
In a study of 28 adult New Zealand White rabbits, the influence of tension and size on muscle regeneration in tibialis anterior free muscle grafts (without vascular anastomoses) was examined 6 months after transplantation. Three laboratory models were studied: (1) whole dynamic (WD) graft (allowing ankle excursion and, therefore, variable dynamic physiologic tension), (2) whole static (WS) graft (constant, fixed length and, thus, only isometric tension), and (3) longitudinally sliced (reduced radius) dynamic (SD) model. Bilateral orthotopic grafts of the tibialis anterior muscle were performed in 24 rabbits (eight animals in each of the three different model groups). Controls consisted of normal tibialis anterior muscle from four age-matched rabbits. All tibialis anterior muscle grafts were examined histologically (fiber counts) and functionally (determined by in situ contractile properties under maximal stimulation conditions). The WD grafts demonstrated a significantly higher number of regenerated fibers per muscle cross section (4819 +/- 589) than the WS (2221 +/- 603) or SD (1919 +/- 732) grafts. The amount of tetanic tension in the WD grafts was 35 percent of the control and twice as much as that of the WS grafts (WD 1.0 +/- 0.2 kg versus WS 0.5 +/- 0.4 kg; p less than 0.05). The SD grafts produced approximately one-third as much maximum tetanic tension as the WD grafts (0.3 +/- 0.1 kg versus 1.0 +/- 0.2 kg), demonstrating that the amount of recovery was similar in these two dynamic models, since only the longitudinal middle third of the muscle was grafted in the SD model. Free muscle grafts under dynamic tension, which allows excursion, have shown a greater amount of muscle-fiber regeneration and restoration of function compared with a graft with fixed length. The positive effect of dynamic mechanical tension on small autogenous free muscle grafts (without vascular anastomoses) is clinically significant in the reconstruction of facial and hand neuromuscular deficits when blood vessels are not available for reanastomosis. Future studies using the tibialis anterior WD and SD transplant models will strengthen our understanding of the events of spontaneous revascularization and skeletal muscle regeneration.  相似文献   

19.
A human model allowing the non-invasive study of bone marrow haemodynamics has been developed. A decrease in postischaemic tissue reperfusion capability (postischaemic hyperaemia) as a function of age (range 25-72 years) was observed both in the human tibia and tibialis anterior muscle. In the tibia bone marrow the reperfusion capability started to decrease after 50 years and was lower than for muscle for all the age range. Mean basal muscle O(2) saturation (80.8% at 25 years) decreases as a function of age (-0.35%+/-0.13% per year) whereas it remains constant for bone marrow (84.8+/-2.8%). A Monte Carlo simulation has been performed to evaluate the accuracy of the derived O(2) saturation measurements and has shown that this parameter is robust even in the presence of substantial noise. It has also been demonstrated that it is necessary to use a multi wavelength NIR spectrometer and a second derivative based fitting algorithm to obtain reliable measurements from the bone marrow, and that the tissue scattering changes occurring during the protocol do not allow the use of the standard near infrared spectroscopy algorithms. The human tibia bone marrow model presented here and the related measurement technique should enable access to new areas of physiological research.  相似文献   

20.
The recently identified adipocytokine adiponectin has been shown to improve insulin action and decrease triglyceride content in skeletal muscle (by stimulating lipid oxidation) in mice. In the present study, we tested the hypothesis that high serum concentrations of adiponectin are associated with lower intramyocellular (IMCL) fat content by promoting lipid oxidation in humans. IMCL-content in predominantly non-oxidative tibialis anterior muscle and oxidative soleus was determined by proton magnetic resonance spectroscopy in a cross- sectional study involving 63 healthy volunteers. In a second set of experiments, changes in IMCL in both muscles were measured after a three days dietary lipid challenge (n = 18) and after intravenous lipid challenge (n = 12) with suppressed lipid oxidation under hyperinsulinemia. Adiponectin serum concentrations were found to be negatively correlated with IMCL in the oxidative soleus muscle (IMCL [sol]) (r = - 0.46, p < 0.001) independent of measures of obesity, but not with IMCL in the non-oxidative tibialis anterior muscle (IMCL [tib]) (p = 0.40). Adiponectin serum concentrations were negatively correlated with the observed increase in IMCL load after dietary lipid challenge in the tibialis (r = 0.53, p = 0.03) but not in the soleus muscle. During suppression of lipid oxidation by hyperinsulinemia, no effect of adiponectin on IMCL was observed in either soleus or tibialis muscle. Overall, the presented findings are consistent with the hypothesis that adiponectin promotes lipid oxidation in humans resulting in lower intracellular lipid content in human muscle. These results are consistent with animal data, where adiponectin could be shown to enhance lipid oxidation and reduce muscle triglycerides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号