首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of LMW κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, succinic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 80 °C. Investigation of FT-IR spectrum of the succinylated LMW κ-carrageenan showed that a monoester derivative with succinyl group was formed when LMW κ-carrageenan reacted with succinic anhydride. The 1H and 13C NMR spectroscopy has been used to characterize the fine structure of O-succinyl derivative of the LMW κ-carrageenan. The 13C and 1H NMR chemical shifts of disaccharide unit of O-succinyl LMW κ-carrageenan have been fully assigned using 2D NMR spectroscopic techniques.  相似文献   

2.
Gelation/melting cycles of κ-carrageenan/galactomannan (guar, tara and locust bean gums) binary systems have been studied by measuring dynamic rheological parameters. Two experimental conditions were used, (i) the total polysaccharide concentration was kept at 1% and the κ-carrageenan/galactomannan ratio fixed at 4:1 and (ii) the κ-carrageenan concentration was fixed at 0·75% and the galactomannan content varied from 0% to 1·2%. A thermal hysteresis was observed for all mixed systems and was found to depend on the galactomannan used. From a comparison of the gelation temperature (Tg) and melting temperature (Tm) to values obtained with κ-carrageenan alone, it was suggested that galactomannan interferes with gel structure by the formation of a secondary network provided that the M/G ratio is high enough.  相似文献   

3.
The rheological behavior of mixed gels made from soy or pea protein concentrates with the addition of κ-carrageenan was investigated using uniaxial compression and dynamic measurements. Pea protein concentrate (PPC) exhibited greater synergy with κ-carrageenan than soy protein concentrate (SPC) in relation to gel strength, gel stiffness and pH stability. A modified Takanayagi treatment of dynamic measurements indicated a shift in the continuous phase from protein to κ-carrageenan at concentrations of 4–8% κ-carrageenan in the total solids. This shift occurred at lower concentrations when PPC was used compared to SPC.  相似文献   

4.
The influence of less than 1% of κ-carrageenan on the mobility of glucose syrup was studied in the context of the glass–rubber transition using proton NMR relaxometry. Glass-transition temperatures, (Tg) were measured by differential scanning calorimetry (DSC) on glucose syrup samples containing 0 or 0.9% κ-carrageenan, between 0 and 1.4% KCl, and at water contents from 3.5 to 16% (wwb). Potassium chloride was added to vary the extent of gelation of the carrageenan in order to assess the effect of the biopolymer network on molecular mobility.

Contrary to the reported increase of the rheologically determined glass-transition temperature, in the presence of gelling agents, the addition of 0.9% κ-carrageenan to glucose syrup with and without KCl, had no effect on the DSC measured Tg. In addition, there was no effect on molecular mobility in the glassy region. The presence of carrageenan only significantly affected the mobile part of the NMR free induction decay at relatively high temperatures.  相似文献   


5.
It is shown that under certain circumstances, on cooling mixed ι- and κ-carrageenan solutions, the two forms gel separately at different temperatures, with the ι form gelling first. This ‘two-step gelation’ was only observed when both sodium and potassium ions were present, with a sodium/potassium mole ratio of between 1 and 100. For such mixed gels, a κ fraction as low as 2·5% of the total carrageenan has significant effects on their rheology, both at low deformation and fracture. In these systems, the κ form, gelling in the presence of an existing ι gel, produces measurable rheological effects at much lower concentrations than if it were alone. This behaviour can be used as a sensitive test of the ‘rheological purity’ of samples of ι-carrageenan.  相似文献   

6.
Mixed gels of κ-carrageenan (κ-car) from Hypnea musciformis and galactomannans (Gal) from Cassia javanica (CJ) and locust bean gum (LBG) were compared using dynamic viscoelastic measurements and compression tests. Mixed gels at 5 g/l of total polymer concentration in 0.1 M KCl showed a synergistic maximum in viscoelastic measurements for κ-car/CJ and κ-car/LBG at 2:1 and 4:1 ratios, respectively. The synergistic maximum obtained from compression tests carried out for mixed gels at 10 g/l of total polymer concentration in 0.25 M KCl was the same for both κ-car/CJ and κ-car/LBG gels. An enhancement in the storage modulus (G′) and the loss modulus (G″) was observed in the mechanical spectra for the mixtures in relation to κ-car. The proportionally higher increase in G″ compared with G′, as indicated by the values of the loss tangent (tan δ), suggests that the Gal adhere non-specifically to the κ-car network.  相似文献   

7.
The viscoelastic and microstructural influences of 0.1-0.6% locust bean gum on 0.5 or 1.0% κ-carrageenan gels, in different ionic environments, have been studied using small deformation oscillatory measurements and transmission electron microscopy (TEM). The results from the Theological measurements showed synergistic effects in the storage modulus, G', as locust bean gum, of two different mannose to galactose ratios (3 and 5), was mixed with ion-exchanged Na- and Ca-κ-carrageenan, in 0.25 M NaCl and 0.030 M CaC12, respectively. The increase in G' was dependent on the mannose to galactose ratio, polymer concentrations, and ionic environment.

At the supermolecular level, the microstructure of dilute samples has been visualised using low angle rotary metal shadowing for TEM. In the presence of sodium and calcium ions, the self-association of κ-carrageenan helices is moderate to low. Locust bean gum did not influence the supermolecular structure of κ-carrageenan to any large extent. The microstructure of the gels at the network level was studied using plastic embedding and thin sectioning for TEM. In both sodium and calcium ionic environments, the mixed gels showed a more homogeneous and connective network structure.  相似文献   


8.
The interaction of κ-carrageenan with three positively charged drug molecules with amphiphile character has been examined using surface tension measurements. The surface tension was measured by the pendant drop method which makes possible the determination at an apparent steady state which is important for polymeric systems. The results are compared with adsorption isotherms from dialysis equilibrium. The surface tension data, show that the presence of κ-carrageenan in the amphiphile solutions leads to an increased and pronounced lowering of the surface tension in a low concentration range of amphiphile. It is also shown that not only the hydrophobicity of the amphiphile but also the structure of the polyelectrolyte (charge density and helix-coil structure) largely determine the extent of interaction.  相似文献   

9.
β-Carrageenan, essentially devoid of ester sulfate, was isolated from the hot aqueous extracts of alkali-modified Eucheuma gelatinae, Eucheuma speciosa, and Endocladia muricatum by precipitating the more anionic moieties with a quaternary ammonium salt, isolating the fractions that did not precipitate, then treating these with an anion-exchange cellulose. The β-carrageenan was characterized by chemical analysis, optical rotation, and NMR. Gelling was found to be ion-independent, with Tg = 31–33°C and Tm = 63–70°C. Specific optical rotations of the isolated β-carrageenan samples were more positive than the κ-, λ-, and ι-carrageenans with which they were compared, while agarose, its stereoisomer, exhibited a negative specific rotation. Electrophoresis gels made from β-carrageenan were used to separate DNA fragments which exhibited faster migration than on an agarose gel of comparable concentration, indicating that β-carrageenan has a less restrictive pore structure.  相似文献   

10.
The chemical modification of native sugarcane bagasse hemicelluloses with succinic anhydride using N-bromosuccinimide as a catalyst and N,N-dimethylacetamide/lithium chloride system as solvent was studied. The parameters optimised included succinic anhydride concentration by the molar ratio of succinic anhydride/anhydroxylose units in native hemicelluloses from 1:1 to 9:1, reaction time 0.5–6 h, NBS concentration 0.5–3.0%, and reaction temperature 25–85 °C required in the process. Results were also compared with other catalysts such as pyridine, DMAP, H2SO4, and other two tertiary amine catalysts, N-methyl pyrrolidine, and N-methyl pyrrolidinone. The degree of substitution of succinylated hemicelluloses ranged between 0.19 and 1.39, depending on the experimental conditions. FT-IR and 1H and 13C NMR spectroscopic characterization of the esterified polymers indicated a monoester substitution. The thermal stability of the succinylated hemicelluloses decreased upon chemical modification.  相似文献   

11.
Streptomyces kurssanovii are Gram-positive mycelial bacteria ubiquitous in soil. They have a saprophytic way of life and produce many extracellular enzymes with polymer-degrading properties, for example, chitinase (EC 3.2.1.14) and N-acetyl-β- -glucosaminidase (EC3.2.1.30). Biochemical aspects of chitosan degradation were presented. Low-molecular-weight (LMW) chitosans with molecular weight 4–8 kDa were prepared from commercial crab chitosan by means of chitinolytic a complex from S. kurssanovii. The optimum conditions of process in solution (temperature, pH, enzyme-substrate ratio) have been determined. Yields of LMW chitosan were 70–80%.  相似文献   

12.
13.
The acetylation of wheat straw hemicellulose B was carried out in a homogeneous N,N-dimethylformamide and lithium chloride system with acetic anhydride using 4-dimethylaminopyridine as a catalyst. The degree of substitution of hemicellulose B acetates ranged between 0.59 and 1.25 as a function of experimental conditions. Under an optimum condition (85°C, 60 h), approximately 75% of the free hydroxyl groups in native hemicellulose B were acetylated. The molecular weight measurements (31,890–34,090 g mol−1) showed a controllable degradation of hemicellulose B chains during the reactions at temperature 60–85°C and duration of 2–60 h. It was found that the thermal stability of the products was increased by chemical modification.  相似文献   

14.
对κ-卡拉胶进行氧化降解,得到分子量不同的两种卡拉胶低聚糖,并分别制成四丁基铵盐,进而与马来酸酐进行酰化,制得两种不同分子量的卡拉胶马来酰基化衍生物.对产物进行IR表征,并对产物的抗氧化性能进行测试.结果表明:κ-卡拉胶在马来酰基化以后对超氧阴离子自由基O_2以及过氧化氢的清除能力都大大增强了.  相似文献   

15.
The solubility of κ-carrageenan in low water-content solvents is important in food applications where complete solubilization is required for proper development of structure and rheology. The effect of glycerol and sorbitol on the gelation and conformational helix transition of κ-carrageenan was studied using rheology and optical rotation. Glycerol/water solutions from 0–100 wt% glycerol and sorbitol solutions from 0–100% saturation were studied over the temperature range 0–90°C. The results were analyzed in terms of solvent solubility parameters, water chemical potential, and solvent dielectric constant. Effective cohesive energy density parameters could not be inferred for the carrageenan, but the gelation temperature could be correlated with solvent dielectric constant. Hydrogen bonding interactions control the carrageenan helix formation. The cohesive energy density as a measure of solvent quality accounts for hydrogen bonding but not Coulombic interactions, and the Coulombic interactions scale on dielectric constant. This indicates the dominant role of electrostatics on the gelation process.  相似文献   

16.
17.
We investigated the ability of gastric digestive products from casein to stimulate cholecystokinin release by intestinal cells using the isolated vascularly perfused rat duodenojejunum. Casein digests were prepared with an in vitro system simulating gastric digestion and emptying.

The luminal infusion of the digesta emptied from the artificial stomach for the first 10 minutes produced a sharp rise of portal cholecystokinin-like immunoreactivity to 300% of basal, followed by a well-sustained plateau secretion until the end of the infusion. The residual casein fraction of this digest brought about a modest cholecystokinin secretion, while the peptide component was as strong a stimulant as total digest. The peptide responsible for this effect was the glycomacropeptide that is a glycosylated fragment (106–169) of κ-casein. Only the slightly glycosylated forms of the peptide originating from variant A of κ-casein were active. The carbohydrate-free peptide did not alter basal cholecystokinin. The highly glycosylated forms of the peptide and the slightly glycosylated peptide from κ-casein variant B induced only a transient and low rise of portal cholecystokinin. The removal of N-acetylneuraminic acid from the active peptide suppressed its effect, while the infusion of an N-acetylneuraminic acid solution induced only a very low response.

It is concluded that the glycomacropeptide released from dietary casein during gastric digestion can stimulate cholecystokinin release by intestinal cells in the rat. A well-defined structure is required for the peptide activity. A part of the peptide chain and some glycosidic chains containing N-acetylneuraminic acid, especially those bound to the amino acid residue threonyl 31 of caseinomacropeptide variant A, would be involved in this structure.  相似文献   


18.
Compatibility, flow and visco-elastic properties of a pregelatinised maize starch mixed with κ-carrageenan were investigated. After cooking of the pregelatinised starch, some undissolved granules remained in solution. Aqueous mixtures of κ-carrageenan and starch were studied at 60 °C and 20 °C by combining rheological measurements and microscopic observations under conditions allowing gelation of carrageenan and non-gelation of starch. The viscometric study of mixed dilute solutions of amylose from pregelatinised starch and carrageenan showed that the components are slightly incompatible. Mixture viscosity and elastic modulus were studied at 60 °C in details as a function of mixture composition for a total polymer concentration of 3%; both were found to be significantly higher than the corresponding theoretical additive values. This finding was interpreted by starch granules excluded volume effect. At 20 °C, no noticeable increase of mixture elastic modulus was found as compared with the additive value. The absence of the synergistic effect is supposed to be due to the formation of highly inhomogeneous gels with agglomerates of undissolved granules.  相似文献   

19.
Kim WH  Lee JW  Gao B  Jung MH 《Cellular signalling》2005,17(12):1516-1532
IFN-γ and TNF-α are major proinflammatory cytokines implicated in islet β-cell destruction, which results in type-1 diabetes; however, the underlying mechanism is not clear. Using pancreatic β-cell line MIN6N8 cells, co-treatment with TNF-α and IFN-γ, but neither cytokine alone, synergistically induced apoptosis, correlated with the activation of the JNK/SAPK, which resulted in the production of reactive oxidative species (ROS) and loss of mitochondrial transmembrane potential (ΔΨm). Additionally, cells transfected with wild-type JNK1 became more susceptible to apoptosis induced by TNF-α/IFN-γ through ROS production and loss of Δψm, while cascading apoptotic events were prevented in dominant-negative JNK1-transfected or JNK inhibitor SP600125-treated cells. As the antioxidant, N-acetyl-cysteine, failed to completely suppress apoptosis induced by TNF-α/IFN-γ, an additional pathway was considered to be involved. The level of p53 was significantly increased through synergistic activation of JNK by TNF-α/IFN-γ. Furthermore, the synergistic effect of TNF-α/IFN-γ on apoptosis and ROS production was further potentiated by the overexpression of wild-type p53, but not with mutant p53. This synergistic activation of JNK/SAPK by TNF-α/IFN-γ was also induced in insulin-expressing pancreatic islet cells, and increased ROS production and p53 level, which was significantly inhibited by SP600125. Collectively, these data demonstrate that TNF-α/IFN-γ synergistically activates JNK/SAPK, playing an important role in promoting apoptosis of pancreatic β-cell via activation of p53 pathway together with ROS.  相似文献   

20.
Mammalian brain has a β-carboline 2N-methyltransferase activity that converts β-carbolines, such as norharman and harman, into 2N-methylated β-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this β-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has β-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 μM) the 2N-methylation of 9-methylnorharman, a substrate for β-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit β-carboline 2N-methyltransferase activity in a concentration-dependent manner. β-Carboline 2N-methyltransferase activity (43.7 pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity.

We are investigating the potential role of N-methylated β-carbolinium cations in the pathogenesis of idiopathic Parkinson’s disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated β-carbolinium cations, we propose a novel hypothesis regarding Parkinson’s disease—a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+-like 2N-methylated β-carbolinium cations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号