首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review outlines how eyes of terrestrial vertebrates and insects meet the competing requirements of coding both spatial and spectral information. There is no unique solution to this problem. Thus, mammals and honeybees use their long-wavelength receptors for both achromatic (luminance) and colour vision, whereas flies and birds probably use separate sets of photoreceptors for the two purposes. In particular, we look at spectral tuning and diversification among 'long-wavelength' receptors (sensitivity maxima at greater than 500 nm), which play a primary role in luminance vision. Data on spectral sensitivities and phylogeny of visual photopigments can be incorporated into theoretical models to suggest how eyes are adapted to coding natural stimuli. Models indicate, for example, that animal colour vision--involving five or fewer broadly tuned receptors--is well matched to most natural spectra. We can also predict that the particular objects of interest and signal-to-noise ratios will affect the optimal eye design. Nonetheless, it remains difficult to account for the adaptive significance of features such as co-expression of photopigments in single receptors, variation in spectral sensitivities of mammalian L-cone pigments and the diversification of long-wavelength receptors that has occurred in several terrestrial lineages.  相似文献   

2.
3.
4.
Behavioural evidence for colour vision in stomatopod crustaceans   总被引:2,自引:0,他引:2  
If an organism can be taught to respond in a particular way to a wavelength of light, irrespective of that light's intensity, then it must be able to perceive the colour of the stimulus. No marine invertebrate has yet been shown to have colour vision. Stomatopod crustaceans (mantis shrimps) are colourful animals and their eyes have many adaptations which indicate that they are capable of such spectral analysis. We adopted an associative learning paradigm to attempt to demonstrate colour vision. Stomatopods readily learnt to choose some colours from arrays of greys, even when the correct choice colours were darker than the ones they had been trained to. Possible mechanisms underlying colour vision in these animals, and their ecological significance are discussed. A simple model is presented which may help interpret the complex-stomatopod colour vision system and explain some of the learning anomalies.Abbreviations ND neutral density - OD optical density - R8 Retinular cell 8 - R1–7 Retinular cells 1–7 - R1D Distally placed R1–7 retinular cells in mid-band row 1 - e.g. R1P Proximally placed R1–7 retinular cells in mid-band row 1 - D/P Estimate of chromatic signal ratio  相似文献   

5.
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.  相似文献   

6.
7.
8.
Some fundamental principles of colour vision, deduced from perceptual studies, have been understood for a long time. Physiological studies have confirmed the existence of three classes of cone photoreceptors, and of colour-opponent neurons that compare the signals from cones, but modern work has drawn attention to unexpected complexities of early organization: the proportions of cones of different types vary widely among individuals, without great effect on colour vision; the arrangement of different types of cones in the mosaic seems to be random, making it hard to optimize the connections to colour-opponent mechanisms; and new forms of colour-opponent mechanisms have recently been discovered. At a higher level, in the primary visual cortex, recent studies have revealed a simpler organization than had earlier been supposed, and in some respects have made it easier to reconcile physiological and perceptual findings.  相似文献   

9.
10.
Many birds see in the ultraviolet (300–400 nm), but there is limited evidence for colour communication (signalling by spectral shape independently of brightness) in this ''hidden'' waveband. Such data are critical for the understanding of extravagant plumage colours, some of which show considerable UV reflectance. We investigated UV colour vision in female social responses to the male UV/violet ornament in bluethroats, Luscinia s. svecica. In an outdoor aviary at the breeding grounds, 16 females were each presented with a unique pair of males of equal age. In UVR (UV reduction) males, sunblock chemicals reduced only the UV reflectance and thereby the spectral shape (colour) of the throat ornament. In NR (neutral reduction) males, an achromatic pigment in the same base solvent (preen gland fat) was used for a corresponding but uniform brightness reduction. Both colour and brightness effects were invisible to human eyes, and were monitored by spectrometry. In 13 of the 16 trials, the female associated most with the NR male, a preference that implies that UV colour vision is used in mate choice by female bluethroats. Reflectance differences between one-year-old and older males were significant only in UV, suggestive of a UV colour cue in age-related mate preferences.  相似文献   

11.
Summary Extracellular recordings have been made from ganglion cells of the lemon shark retina: ON, OFF and ON-OFF units were recorded. Spectral sensitivity measurements under darkadapted conditions reveal a max of 519–522 nm. This may be due to two photoreceptor systems. A second class of ganglion cells was characterized as receiving input from a single 544 nm visual pigment system.  相似文献   

12.
It is often assumed that all Old World monkeys share the same trichromatic colour vision, but the evidence in support of this conclusion is sparse as only a small fraction of all Old World monkey species have been tested. To address this issue, spectral sensitivity functions were measured in animals from eight species of Old World monkey (five cercopithecine species and three colobine species) using a non-invasive electrophysiological technique. Each of the 25 animals examined had spectrally well-separated middle- and long-wavelength cone pigments. Cone pigments maximally sensitive to short wavelengths were also detected, implying the presence of trichromatic colour vision. Direct comparisons of the spectral sensitivity functions of Old World monkeys suggest there are no significant variations in the spectral positions of the cone pigments underlying the trichromatic colour vision of Old World monkeys.  相似文献   

13.
Evolutionary significance of ontogenetic colour change in animals   总被引:2,自引:0,他引:2  
Ontogenetic colour changes are non-reversible colour changes associated with normal progressive development of an individual of a species. This paper provides the first review of the evolutionary significance of this phenomenon in animals. Proximate mechanisms and environmental cues are briefly discussed and a conceptual framework for understanding the ultimate reasons for ontogenetic colour change is established. Changes in size, vulnerability, reproductive status, habitat and metabolism are often associated with ontogenetic colour change and can aid in understanding its adaptive significance. Neutral or non-adaptive ontogenetic colour changes due to phylogenetic inertia and developmental constraints are also considered. Existing studies of ontogenetic colour changes in marine invertebrates, terrestrial invertebrates, fish, amphibians, reptiles, birds and mammals are discussed within this framework. A need is identified for more experimental tests of hypotheses for the significance of ontogenetic colour change.  相似文献   

14.
Pseudoisochromatic plates are among the most popular tests for defective colour vision. They are particularly good for screening but are less good in assessing the degree and type of the colour vision defect. To select colours for use in diagnostic plates a large number of colour defective subjects have made colour matches with the Lovibond Tintometer and the isochromatic data collected. Pseudoisochromatic plates have been printed using pairs of colours only and incorporating both a random dot and a regular dot format. These plates have proved effective in a clinical trial. Not only must pairs of inks be carefully selected to lie upon appropriate isochromatic lines but the luminance contrast between the two colours must be kept within 5%. Failure to control luminance contrast is as much a source of error in currently available pseudoischromatic tests as the inappropriate use of colour.  相似文献   

15.
16.
The dramatic colours of biological communication signals raise questions about how animals perceive suprathreshold colour differences, and there are long-standing questions about colour preferences and colour categorization by non-human species. This study investigates preferences of foraging poultry chicks (Gallus gallus) as they peck at coloured objects. Work on colour recognition often deals with responses to monochromatic lights and how animals divide the spectrum. We used complementary colours, where the intermediate is grey, and related the chicks' choices to three models of the factors that may affect the attractiveness. Two models assume that attractiveness is determined by a metric based on the colour discrimination threshold either (i) by chromatic contrast against the background or (ii) relative to an internal standard. An alternative third model is that categorization is important. We tested newly hatched and 9-day-old chicks with four pairs of (avian) complementary colours, which were orange, blue, red and green for humans. Chromatic contrast was more relevant to newly hatched chicks than to 9-day-old birds, but in neither case could contrast alone account for preferences; especially for orange over blue. For older chicks, there is evidence for categorization of complementary colours, with a boundary at grey.  相似文献   

17.
Genetic colour polymorphisms are widespread across animals and often subjected to complex selection regimes. Traditionally, colour morphs were used as simple visual markers to measure allele frequency changes in nature, selection, population divergence and speciation. With advances in sequencing technology and analysis methods, several model systems are emerging where the molecular targets of selection are being described. Here, we discuss recent studies on the genetics of sexually selected colour polymorphisms, aiming at (i) reviewing the evidence of sexual selection on colour polymorphisms, (ii) highlighting the genetic architecture, molecular and developmental basis underlying phenotypic colour diversification and (iii) discuss how the maintenance of such polymorphisms might be facilitated or constrained by these. Studies of the genetic architecture of colour polymorphism point towards the importance of tight clustering of colour loci with other trait loci, such as in the case of inversions and supergene structures. Other interesting findings include linkage between colour loci and mate preferences or sex determination, and the role of introgression and regulatory variation in fuelling polymorphisms. We highlight that more studies are needed that explicitly integrate fitness consequences of sexual selection on colour with the underlying molecular targets of colour to gain insights into the evolutionary consequences of sexual selection on polymorphism maintenance.  相似文献   

18.
Colour and greyscale (black and white) pictures look different to us, but it is not clear whether the difference in appearance is a consequence of the way our visual system uses colour signals or a by-product of our experience. In principle, colour images are qualitatively different from greyscale images because they make it possible to use different processing strategies. Colour signals provide important cues for segmenting the image into areas that represent different objects and for linking together areas that represent the same object. If this property of colour signals is exploited in visual processing we would expect colour stimuli to look different, as a class, from greyscale stimuli. We would also expect that adding colour signals to greyscale signals should change the way that those signals are processed. We have investigated these questions in behavioural and in physiological experiments. We find that male marmosets (all of which are dichromats) rapidly learn to distinguish between colour and greyscale copies of the same images. The discrimination transfers to new image pairs, to new colours and to image pairs in which the colour and greyscale images are spatially different. We find that, in a proportion of neurons recorded in the marmoset visual cortex, colour-shifts in opposite directions produce similar enhancements of the response to a luminance stimulus. We conclude that colour is, both behaviourally and physiologically, a distinctive property of images.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号