首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To test whether environmental diversification played a role in the diversification of the New Caledonian Hydropsychinae caddisflies. Location New Caledonia, south‐west Pacific. Methods The phylogeny of the New Caledonian Hydropsychinae caddisflies was hypothesized using parsimony and Bayesian methods on molecular characters. The Bayesian analysis was the basis for a comparative analysis of the correlation between phylogeny and three environmental factors: geological substrate (ultrabasic, non‐ultrabasic), elevation and precipitation. Phylogenetic divergence times were estimated using a relaxed clock method, and environmental factors were mapped onto a lineage‐through‐time plot to investigate the timing of environmental diversification in relation to species radiation. The correlation between rainfall and elevation was tested using independent contrasts, and the gamma statistic was calculated to infer the diversification pattern of the group. Results The diversification of extant Orthopsyche–Caledopsyche species began in the Middle–Late Oligocene, when much of the island of New Caledonia was covered by ultrabasic substrate and mountain forming was prevalent. Most lineages originated in the Middle–Late Miocene, a period associated with long‐term climate oscillation. Optimization of environmental factors on the phylogeny demonstrated that the New Caledonian Hydropsychinae group adapted to ultrabasic substrate early in its evolutionary history. The clade living mostly on ultrabasic substrate was far more species‐rich than the clade living mostly on non‐ultrabasic substrate. Elevation and rainfall were significantly correlated with each other. The lineage‐through‐time plot revealed that the main environmental diversification preceded species diversification. A constant speciation through time was rejected, and the negative gamma indicates that most of the diversification occurred early in the history of the clade. According to the inferred phylogeny, the genus Orthopsyche McFarlane is a synonym under Caledopsyche Kimmins, and Abacaria caledona Oláh & Barnard should also be included in Caledopsyche. Main conclusions The age of the radiation does not support a vicariance origin of New Caledonian Hydropsychinae caddisflies. Environmental diversification pre‐dates lineage diversification, and thus environmental heterogeneity potentially played a role in the diversification of the group, by providing a variety of fragmented habitats to disperse into, promoting speciation. The negative gamma indicates that the speciation rate slowed as niches started to fill.  相似文献   

2.
Xanthochorema is a genus of the Hydrobiosidae (Trichoptera) endemic to New Caledonia, with four described species. A fifth, Xanthochorema paniensis new species, is described herein, based on a mature male pupa from the We Caot River, Mont Panié, northeast New Caledonia.  相似文献   

3.
Aiba  Shin-ichiro  Kitayama  Kanehiro 《Plant Ecology》1999,140(2):139-157
We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both 4.8 cm and 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.  相似文献   

4.
In area, New Caledonia is the smallest of the world’s 25 official biodiversity hotspots, but in many taxonomic groups, the island has the highest concentration of species on earth, particularly so in the freshwater insect order Trichoptera. This study aims at applying molecular data and morphology for estimating the real species diversity of the genus Agmina on New Caledonia and investigating potential effects of ultramafic rock substrate on diversification. A dated molecular phylogeny was applied to study diversity and diversification related to geological substrate using the dispersal–extinction–cladogenesis model, diva and Bayesian ancestral character reconstruction. More than 47 species (> 63%) were unknown to science. Initial radiation occurred on ultramafic substrate followed by several independent dispersal events to nonultramafic substrate. The rate of shift from ultramafic to nonultramafic substrate was significantly higher than the rate of shift in the opposite direction, indicating a possible cost associated with living on ultramafic substrate.  相似文献   

5.
Aim To reconstruct the biogeographical history of New World emballonurid bats (tribe Diclidurini). Although bats are the second most species‐rich order of mammals, they have not contributed substantially to our understanding of the historical biogeography of mammals in the Neotropics because of a poor fossil record. In addition, being the only group of mammals that fly, bats typically have large distributions with relatively few species endemic to restricted areas that are amenable to vicariant biogeographical approaches. Location Central and South America. Methods Phylogenetic analysis for comparing trees (PACT) is a new algorithm that incorporates all spatial information from taxon area cladograms into a general area cladogram. There were nine biogeographical areas identified in Central and South America for New World emballonurid bats. Molecular dating was used to incorporate the temporal aspect of historical biogeography. This method was compared with dispersal–vicariance analysis (DIVA), which assumes vicariance as the default mode of speciation. Results Of the 45 speciation events in a fully resolved phylogeny, eight that were hypothesized by DIVA as vicariance were considered by PACT as two peripheral isolations and six within‐area events. DIVA was less parsimonious because it required six more post‐speciation dispersal events in addition to the 73 hypothesized by PACT. DIVA reconstructed a widely distributed ancestor, suggesting that most dispersal events occurred earlier, whereas the ancestral area for PACT based on character optimization was the Northern Amazon, suggesting that dispersal events were more recent phenomena. Main conclusions The general area cladogram from PACT indicated that within‐area events, and not vicariance, provide the major mode of speciation for New World emballonurid bats. There was no biological evidence supporting or rejecting sympatric speciation in New World emballonurid bats. However, the geological history, combined with fluctuations in temperature and sea level, suggested within‐area speciation in a changing and heterogeneous environment in the Northern Amazon during the Miocene. This scenario is similar to the taxon‐pulse hypothesis of biotic diversification, which posits repeated episodes of range expansions and contractions from a stable core area such as the Guiana Shield within the Northern Amazon.  相似文献   

6.
Conoesucidae (Trichoptera, Insecta) are restricted to SE Australia, Tasmania and New Zealand. The family includes 42 described species in 12 genera, and each genus is endemic to either New Zealand or Australia. Although monophyly has been previously assumed, no morphological characters have been proposed to represent synapomorphies for the group. We collected molecular data from two mitochondrial genes (16S and cytochrome oxidase I), one nuclear gene (elongation factor 1-α) (2237–2277 bp in total), and 12 morphological characters to produce the first phylogeny of the family. We combined the molecular and morphological characters and performed both a maximum parsimony analysis and a Bayesian analysis to test the monophyly of the family, and to hypothesize the phylogeny among its genera. The parsimony analysis revealed a single most parsimonious tree with Conoesucidae being a monophyletic taxon and sistergroup to the Calocidae. The Bayesian inference produced a distribution of trees, the consensus of which is supported with posterior probabilities of 100% for 15 out of 22 possible ingroup clades including the most basal branch of the family, indicating strong support for a monophyletic Conoesucidae. The most parsimonious tree and the tree from the Bayesian analysis were identical except that the ingroup genus Pycnocentria changed position by jumping to a neighbouring clade. Based on the assumption that the ancestral conoesucid species was present on both New Zealand and Australia, a biogeographical analysis using the dispersal-vicariance criteria demonstrated that one or two (depending on which of the two phylogenetic reconstructions were applied) sympatric speciation events took place on New Zealand prior to a single, late dispersal from New Zealand to Australia.  相似文献   

7.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

8.
We present a molecular phylogenetic analysis of 2808 aligned bp of rrnL, cox1, cob, H3 and 18S rRNA of all major morphological groups of Papuadytes diving beetles (Coleoptera: Dytiscidae) which are diverse in running water habitats throughout the Australian region. We focus on the origin of the fauna of the megadiverse islands of New Guinea and New Caledonia. Parsimony as well as Bayesian analyses suggest a basal position of Australian species in a paraphyletic series, with more recent nested radiations in New Caledonia and New Guinea. According to molecular clock analyses, both landmasses were colonized during the Miocene, which matches geological data and corroborates similar findings in other taxonomic groups. Our analyses suggest that dispersal played an important role in the formation of these large insular faunas, although successful colonization appears to be a rare event, and, in this case, is unidirectional. Whether or not a lineage is present on an island is due to chance: Papuadytes are absent from Fiji, where related Copelatus have radiated extensively in the same habitats occupied by Papuadytes in New Caledonia and New Guinea, while Copelatus are absent from New Caledonia. Lineages of Papuadytes apparently colonized New Caledonia twice, around 14 and 9 MYA according to the molecular calibration, and both lineages are derived from an Australian ancestor. The older clade is represented only by two apparently relictual mountain species (one morphologically strongly adapted to highly ephemeral habitats), while the younger clade contains at least 18 species exhibiting a great morphological diversity. The 150+ species in New Guinea are monophyletic, apparently derived from an Australian ancestor, and constitute a morphologically rather homogenous group. The tree backbone remains insufficiently supported under parsimony and Bayesian analyses, where shorter branches suggest a rapid sequence of major branching events.  相似文献   

9.
A new cladistic method for the estimation of ancestral areas is based on reversible parsimony in combination with a weighting scheme that weights steps in positionally plesiomorphic branches more highly than steps in positionally apomorphic branches. By applying this method to cladograms of human mitochondrial DNA, the method is superior to previously proposed algorithms. The method is also an appropriate tool for the solution of the redundant distribution problem in area cladograms. Under the assumption of allopatric speciation, redundant distributions, i.e., sympatry of sister groups, show that dispersal has occurred; thus, the ancestral area of at least one sister group was smaller than the combined distribution of its descendants. With the weighted ancestral area analysis, the ancestral areas can be confined and at least some dispersal events can be distinguished from possible vicariance events. As applied to a cladogram of the Polypteridae, weighted ancestral area analysis is superior to Brooks parsimony analysis (assumption 0) and component analysis under assumptions 1 and 2 (Nelson and Platnick, 1981, Systematics and biogeography: Cladistics and vicariance. Columbia Univ. Press, New York.) in resolving redundancies. The results of the weighted ancestral area analysis may differ from the results of dispersal-vicariance analysis, because the rules of dispersal-vicariance analysis indirectly favor the questionable assumption that the ancestral species occupied only one unit area.  相似文献   

10.
Among the many species that grow in New Caledonia, the pitcher plant Nepenthes vieillardii (Nepenthaceae) has a high degree of morphological variation. In this study, we present the patterns of genetic differentiation of pitcher plant populations based on chloroplast DNA haplotype analysis using the sequences of five spacers. We analyzed 294 samples from 16 populations covering the entire range of the species, using 4660 bp of sequence. Our analysis identified 17 haplotypes, including one that is widely distributed across the islands, as well as regional and private haplotypes. The greatest haplotype diversity was detected on the eastern coast of the largest island and included several private haplotypes, while haplotype diversity was low in the southern plains region. The parsimony network analysis of the 17 haplotypes suggested that the genetic divergence is the result of long-term isolation of individual populations. Results from a spatial analysis of molecular variance and a cluster analysis suggest that the plants once covered the entire serpentine area of New Caledonia and that subsequent regional fragmentation resulted in the isolation of each population and significantly restricted seed flow. This isolation may have been an important factor in the development of the morphological and genetic variation among pitcher plants in New Caledonia.  相似文献   

11.
? Premise of the study: Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. ? Methods: We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. ? Key results: We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. ? Conclusions: Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.  相似文献   

12.
Island species are thought to be extinction‐prone because of small population sizes, restricted geographical distribution and limited dispersal ability. However, the topographical and environmental heterogeneity, geographical isolation and stability of islands over long timescales could create refugia for taxa whose source area is threatened by environmental changes. We address this possibility by inferring the evolution of the New Caledonia (NC) and New Zealand (NZ) conifer diversity, which represents over 10% of the world's diversity for this group. We estimate speciation and extinction rates in relation to the presence/absence on these islands, and dispersal rates between the islands and surrounding areas. We also test the Eocene submersion of NC and the Oligocene drowning of NZ by comparing the fit of biogeographical scenarios using ancestral area estimations. We find that extinction rates were significantly lower for island species, and dispersal “out of islands” was higher. A model including a diversification shift when NC emerged better explains the diversification dynamics. Biogeographical analyses corroborate that conifers experienced high continental extinctions, but survived on islands. NC and NZ have thus contributed to the world's conifer diversity as “island refugia”, by maintaining early‐diverging lineages from continents during environmental changes on continents. These ancient islands also acted as “species pumps”, providing species into adjacent areas. Our study highlights the important but neglected role of islands in promoting the evolution and conservation of biodiversity.  相似文献   

13.
Herbarium and field specimens (over 300) of all of the Flacourtiaceae of New Caledonia were analysed for nickel in order to identify hyperaccumulators (greater than 1000 microgram/g dry mass) and to assess nickel accumulation in relation to the evolutionary status of 'nickel plants' of New Caledonia. One hyperaccumulator was identified in the genus Lasiochlamys, ten among Xylosoma, one among Casearia and seven among Homalium. Although these Homalium nickel plants had previously been recorded, fresh data for these and other Homalium are presented. The remarkable tolerance of Flacourticeae to ultrabasic rocks is shown by the fact that 75% of the species are found on such substrates. The number of hyperaccumulators was greatest in the genera Xylosoma and Homalium. The Flacourtiaceae are among the most primitive of all angiosperms and in common with other primitive hyperaccumulators, contain nickel as a complex with citric acid. The only advanced New Caledonian nickel plant (Psychotria douarrei) has most of its nickel bound with ligands other than citric acid, a feature of other advanced hyperaccumulators. It is postulated that nickel complexing with citric acid may be a primitive character. Most of the New Caledonian nickel plants belong to the order Violales of subclass Dilleniidae. It is suggested that hyperaccumulation of nickel is an evolutionary character which occurs in long-indisturbed floras such as that of New Caledonia.  相似文献   

14.
We present the first report on the chromosome number of Strasburgeria robusta, which is confined to montane forests of New Caledonia and is the only known species in Strasburgeriaceae. The species has 2n = 500, which is an exceedingly high chromosome number in angiosperms. Within Crossosomatales, molecular evidence has indicated that S. robusta is sister to Ixerba brexioides, which is endemic to New Zealand and is the sole species in Ixerbaceae. Comparisons to the chromosome number of I. brexioides (2n = 50) support a close affinity between the two species because they share the base number x = 25. It is generally accepted that an increase in ploidy is associated with the origin of novel adaptations. A high level of polyploidy (20x with x = 25) may have allowed S. robusta to survive on a fragment of Gondwana by adapting to its ultrabasic substrate.  相似文献   

15.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

16.
The distribution of the 36 palm species of New Caledonia is studied in relation to several parameters: elevation, rainfall, geological substrate, phytogeographical sectors and vegetation types. The climate (thermal gradient and rainfall) appears to be the principal factor influencing the distribution of palms, the substrate effect being subordinate to the climatic pattern. Nearly all palm populations are included within the 1,500 mm isoline. Maximum levels of species richness and endemism are located in four areas receiving more than 3,000 mm of annual rainfall. We interpret these areas as former Pleistocene refugia of lowland rain forest based on three lines of evidence: 1) all locally endemic lowland palm species and genera are restricted to these areas; 2) local endemics occur on east-facing slopes receiving the highest rainfall and most likely to have sustained rain forests during the driest periods; and 3) several pairs of sister species are disjunct between the southeastern and northeastern high rainfall areas.  相似文献   

17.
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.  相似文献   

18.
The sea snake subfamily Laticaudinae consists of a single genus with eight named species, based on morphological characters. We used microsatellite and mitochondrial DNA (mtDNA) data to clarify the adaptive radiation of these oviparous sea snakes in the South Pacific, with special reference to New Caledonia and Vanuatu. A mitochondrial DNA data set (ND4 gene 793 bp) was obtained from 345 individuals of the five species of Laticauda sp. sea snakes endemic to the region. Maximum likelihood and Bayesian approaches yielded the same optimal tree topology, identifying two major clades (yellow-banded and blue-banded sea snakes). Although all laticaudine sea snakes rely on small islands as oviposition sites, the two lineages differ in their use of marine vs. terrestrial habitats. A highly aquatic species (Laticauda laticaudata) shows a strong pattern of genetic isolation by distance, implying that the patchy distribution of terrestrial habitats has had little impact on gene flow. The more terrestrial clade (Laticauda colubrina, Laticauda frontalis, Laticauda guineai, Laticauda saintgironsi) shows stronger geographic differentiation in allelic frequencies, associated with island groups rather than with geographic distance. Microsatellites and mtDNA suggest that L. frontalis (restricted to Vanuatu) represents a recent founder-induced speciation event, from allopatric migrants of the New Caledonian taxon L. saintgironsi. A major divergence in speciation patterns between the two major clades of laticaudine snakes thus correlates with (and perhaps, is driven by) differences in the importance of terrestrial habitats in the species' ecology.  相似文献   

19.
Aim The role of long‐distance dispersal in the Indomalesian, Australasian and Pacific flora is currently hotly debated. The lack of well‐resolved phylogenetic trees for Pacific plants has been a major limitation for biogeographical analysis. Here, we present a well‐resolved phylogenetic tree for the tribe Aglaieae in the mahogany family, Meliaceae, and use it to investigate the origin, evolution and dispersal history of biotas in this area. The subfamily Melioideae, including the tribe Aglaieae (Meliaceae, Sapindales), is a plant group with good representation in the region in terms of biomass and species numbers, wide ecological attributes and known animal vectors. The family has a good fossil record (especially from North America and Europe). Genera and species in the tribe Aglaieae therefore provide an excellent model group for addressing this debate. Location Indomalesia, Australasia, Pacific islands. Methods Results from nuclear internal transcribed spacer ribosomal DNA analyses of 82 taxa, based on sequence alignment guided by secondary structure models, were combined with evidence from fossils and distribution data. We used strict and relaxed molecular clock approaches to estimate divergence times within Aglaieae. Putative ancestral areas were investigated through area‐based and event‐based biogeographical approaches. Information on dispersal routes and their direction was inferred from the investigation of dispersal asymmetries between areas. Results Our study indicates that the crown group of Aglaieae dates back at least to the Late Eocene, with major divergence events occurring during the Oligocene and Miocene. It also suggests that dispersal routes existed during Miocene–Pliocene times from the area including Peninsular Malaysia, Sumatra and Borneo to Wallacea, India and Indochina, and from the area including New Guinea, New Ireland and New Britain further east to the Pacific islands at the peripheries of the distribution range. The origin of the Fijian species dates back to the Pliocene. Main conclusions Dispersal over oceanic water barriers has occurred during geological time and seems to have been a major driving force for divergence events in Aglaieae, with some old Gondwanan land masses (e.g. Australia) colonized only during recent times. Movement from the ancestral area was predominantly towards the east. Extant Fijian species of Aglaia are monophyletic and share morphological features rarely found in species of other areas, suggesting speciation within an endemic clade. Divergence of living taxa from their closest living relatives took place during both the Miocene and the Pliocene, and peaked in the Pliocene. The present‐day distribution of many species in the tribe must therefore have arisen as a result of dispersal rather than vicariance events. Furthermore, colonization from Indomalesia to Australasia and the Pacific has frequently been followed by speciation.  相似文献   

20.
Several shifts from ancestral conifer feeding to angiosperm feeding have been implicated in the unparalleled diversification of beetle species. The single largest angiosperm-feeding beetle clade occurs in the weevils, and comprises the family Curculionidae and relatives. Most authorities confidently place the bark beetles (Scolytidae) within this radiation of angiosperm feeders. However, some clues indicate that the association between conifers and some scolytids, particularly in the tribe Tomicini, is a very ancient one. For instance, several fragments of Gondwanaland (South America, New Caledonia, Australia and New Guinea) harbour endemic Tomicini specialized on members of the formerly widespread and abundant conifer family Araucariaceae. As a first step towards resolving this seeming paradox, we present a phylogenetic analysis of the beetle family Scolytidae with particularly intensive sampling of conifer-feeding Tomicini and allies. We sequenced and analysed elongation factor 1alpha and nuclear rDNAs 18S and 28S for 45 taxa, using members of the weevil family Cossoninae as an out-group. Our results indicate that conifer feeding is the ancestral host association of scolytids, and that the most basal lineages of scolytids feed on Aramucaria. If scolytids are indeed nested within a great angiosperm-feeding clade, as many authorities have held, then a reversion to conifer feeding in ancestral scolytids appears to have occurred in the Mesozoic, when Araucaria still formed a major component of the woody flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号