首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphometric and stereologic analysis of the organisation of collagen fibrils in tendon tissue after a treatment with an anabolic steroid hormone allowed the following observations: In a short-term study stereological data revealed a potent accumulation of collagen fibrils in the extra-cellular matrix after the administration of an anabolic steroid. Compared with controls, the anabolic steroid significantly increased the number of dysplastic collagen fibrils dependent on duration of treatment. Inter- and intrafibrillary dysplastic collagen fibrils possess characteristic diameter distributions which differ considerably from those of normal collagen fibrils. The functional significance of the changes in mean diameter, diameter distribution, numerical density and volume fraction of collagen fibrils in tendons following hormone treatment may be relevant to the use of these drugs in clinical practice and in competitive sports.  相似文献   

2.
H Michna 《Acta anatomica》1989,135(1):12-16
This study was designed to elucidate the collagen fibril architecture in the murine anulus fibrosus and to reveal the collagen fibril dynamics induced by hormones which are known to influence protein synthesis, the anabolic steroid hormones. These aims were entered in an ultrastructural morphometric analysis. The diameter distributions, mean diameter, cross-sectional area and volume density of the collagen fibrils in the anulus fibrosus indicate no correlation with age, which is in contrast to the anatomy of the collagenous functional structures in tendon. After treatment with the anabolic steroid hormone, an activation of the collagen synthesis as well as an enhanced density and cross-sectional area were detected. Therefore, the data promise an effective use of anabolic steroid hormones in the therapy of such disorders of connective tissue, which could be treated with a stimulation of the synthesis and hypertrophy of collagen fibrils.  相似文献   

3.
4.
Cells in tendon deposit parallel arrays of collagen fibrils to form a functional tissue, but how this is achieved is unknown. The cellular mechanism is thought to involve the formation of intracellular collagen fibrils within Golgi to plasma membrane carriers. This is facilitated by the intracellular processing of procollagen to collagen by members of the tolloid and ADAMTS families of enzymes. The carriers subsequently connect to the extracellular matrix via finger-like projections of the plasma membrane, known as fibripositors. In this study we have shown, using three-dimensional electron microscopy, the alignment of fibripositors with intracellular fibrils as well as an orientated cable of actin filaments lining the cytosolic face of a fibripositor. To demonstrate a specific role for the cytoskeleton in coordinating extracellular matrix assembly, cytochalasin was used to disassemble actin filaments and nocodazole or colchicine were used to disrupt microtubules. Microtubule disruption delayed procollagen transport through the secretory pathway, but fibripositor numbers were unaffected. Actin filament disassembly resulted in rapid loss of fibripositors and a subsequent disappearance of intracellular fibrils. Procollagen secretion or processing was not affected by cytochalasin treatment, but the parallelism of extracellular collagen fibrils was altered. In this case a significant proportion of collagen fibrils were found to no longer be orientated with the long axis of the tendon. The results suggest an important role for the actin cytoskeleton in the alignment and organization of the collagenous extracellular matrix in embryonic tendon.  相似文献   

5.
Lu P  Zhang GR  Song XH  Zou XH  Wang LL  Ouyang HW 《PloS one》2011,6(6):e21154
The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the efficacy of Col V siRNA engineered tenocytes for tendon tissue engineering. RNA interference gene therapy and a scaffold free tissue engineered tendon model were employed. The results showed that scaffold free tissue engineered tendon had tissue-specific tendon structure. Down regulation of collagen V α1 or α2 chains by siRNAs (Col5α1 siRNA, Col5α2 siRNA) had different effects on collagen I and decorin gene expressions. Col5α1 siRNA treated tenocytes had smaller collagen fibrils with abnormal morphology; while those Col5α2 siRNA treated tenocytes had the same morphology as normal tenocytes. Furthermore, it was found that tendons formed by coculture of Col5α1 siRNA treated tenocytes with normal tenocytes at a proper ratio had larger collagen fibrils and relative normal contour. Conclusively, it was demonstrated that Col V siRNA engineered tenocytes improved tendon tissue regeneration. And an optimal level of collagen V is vital in regulating collagen fibrillogenesis. This may provide a basis for future development of novel cellular- and molecular biology-based therapeutics for tendon diseases.  相似文献   

6.
Extracellular matrix organization and the spatial relationship between collagen fibrils, vesicular structures, and the first deposits of mineral in the calcifying leg tendon from the domestic turkey, Meleagris gallopavo, have been investigated by high voltage electron microscopy and three-dimensional computer graphic imaging of serial thick tissue sections. The work demonstrates that the tendon extracellular matrix is a complex assembly of somewhat flexible, highly aligned collagen fibrils with different diameters and occasionally opposite directionality. Smaller collagen fibrils appear to branch from larger fibrils or to aggregate to form those of greater size. While the matrices are dominated by fibrils, space exists between adjacent packed fibrils. The three-dimensional perspective indicates that approximately 60% of the total tendon volume is extrafibrillar over the regions examined. The first observable mineral in this tissue is extrafibrillar and appears to derive from vesicles. This view of three-dimensional matrix-mineral spatial relations supports earlier two-dimensional results that mineral is initially associated with membrane-invested vesicles and is deposited between collagen fibrils, but it is distinct in showing the mineral at different depths in the matrix rather than at a single depth as deduced from two-dimensional conventional electron microscopy. These results are important in the onset and development of tendon calcification in that they suggest, first, that collagen fibrils appear to be aligned three-dimensionally such that their hole zones are in contiguous arrangement. This situation may create channels or grooves within the collagen volume to accommodate extensive mineral deposition in association with the fibrils. Second, the results indicate that there are widely dispersed sites of vesicle-mediated mineralization in the tendon matrix, that the bulk of mineralization in this tissue is collagen-mediated, and that, while vesicles may possibly exert some local influence temporally on mineralization of neighboring collagen, vesicle- and collagen-mediated mineralization arise at spatially and structurally distinct sites by independent nucleation phenomena. Such concepts are fundamental in considerations of possible mechanisms of mineralization of tendon and potentially of other normally calcifying vertebrate tissues in general.  相似文献   

7.
Collagen fibres from rat tail tendon suspended in small pieces in a solution (pH 7.8) containing 0.5 M CaCl2 were treated with purified bovine trypsin at 20 degrees C for 20 h. After the enzyme treatment collagen from this solution was precipitated out and reconstituted in vitro into native-type fibrils. The banding pattern in these reconstituted fibrils was found to be oblique. This is comparable to that observed recently in fibrils reconstituted from cartilage collagen. On the other hand, normal transverse banding pattern was observed in the fibrils reconstituted in vitro from collagen solution of rat tail tendon which was not pre-treated with trypsin. No significant change was, however, observed in the segment long spacing fibrils precipitated from the enzyme-treated collagen solution. It is possible that the enzyme might affect the mode of organization of tropocollagen molecules during in vitro fibrillogenesis into native-type fibrils either by interacting with the "telopeptide" regions or with the non-collagenous components associated with the native protein and this could probably result into the formation of fibrils with oblique banding pattern.  相似文献   

8.
Collagen type I is the most abundant structural protein in tendon, skin and bone, and largely determines the mechanical behaviour of these connective tissues. To obtain a better understanding of the relationship between structure and mechanical properties, tensile tests and synchrotron X-ray scattering have been carried out simultaneously, correlating the mechanical behaviour with changes in the microstructure. Because intermolecular cross-links are thought to have a great influence on the mechanical behaviour of collagen, we also carried out experiments using cross-link-deficient tail-tendon collagen from rats fed with beta-APN, in addition to normal controls. The load-elongation curve of tendon collagen has a characteristic shape with, initially, an increasing slope, corresponding to an increasing stiffness, followed by yielding and then fracture. Cross-link-deficient collagen produces a quite different curve with a marked plateau appearing in some cases, where the length of the tendon increases at constant stress. With the use of in situ X-ray diffraction, it was possible to measure simultaneously the elongation of the collagen fibrils inside the tendon and of the tendon as a whole. The overall strain of the tendon was always larger than the strain in the individual fibrils, which demonstrates that some deformation is taking place in the matrix between fibrils. Moreover, the ratio of fibril strain to tendon strain was dependent on the applied strain rate. When the speed of deformation was increased, this ratio increased in normal collagen but generally decreased in cross-link-deficient collagen, correlating to the appearance of a plateau in the force-elongation curve indicating creep. We proposed a simple structural model, which describes the tendon at a hierarchical level, where fibrils and interfibrillar matrix act as coupled viscoelastic systems. All qualitative features of the strain-rate dependence of both normal and cross-link-deficient collagen can be reproduced within this model. This complements earlier models that considered the next smallest level of hierarchy, describing the deformation of collagen fibrils in terms of changes in their molecular packing.  相似文献   

9.
A precise analysis of the mechanical response of collagen fibrils in tendon tissue is critical to understanding the ultrastructural mechanisms that underlie collagen fibril interactions (load transfer), and ultimately tendon structure–function. This study reports a novel experimental approach combining macroscopic mechanical loading of tendon with a morphometric ultrascale assessment of longitudinal and cross-sectional collagen fibril deformations. An atomic force microscope was used to characterize diameters and periodic banding (D-period) of individual type-I collagen fibrils within murine Achilles tendons that were loaded to 0%, 5%, or 10% macroscopic nominal strain, respectively. D-period banding of the collagen fibrils increased with increasing tendon strain (2.1% increase at 10% applied tendon strain, p < 0.05), while fibril diameter decreased (8% reduction, p < 0.05). No statistically significant differences between 0% and 5% applied strain were observed, indicating that the onset of fibril (D-period) straining lagged macroscopically applied tendon strains by at least 5%. This confirms previous reports of delayed onset of collagen fibril stretching and the role of collagen fibril kinematics in supporting physiological tendon loads. Fibril strains within the tissue were relatively tightly distributed in unloaded and highly strained tendons, but were more broadly distributed at 5% applied strain, indicating progressive recruitment of collagen fibrils. Using these techniques we also confirmed that collagen fibrils thin appreciably at higher levels of macroscopic tendon strain. Finally, in contrast to prevalent tendon structure–function concepts data revealed that loading of the collagen network is fairly homogenous, with no apparent predisposition for loading of collagen fibrils according to their diameter.  相似文献   

10.
Tendons are composed of longitudinally aligned collagen fibrils arranged in bundles with an undulating pattern, called crimp. The crimp structure is established during embryonic development and plays a vital role in the mechanical behaviour of tendon, acting as a shock-absorber during loading. However, the mechanism of crimp formation is unknown, partly because of the difficulties of studying tendon development in vivo. Here, we used a 3D cell culture system in which embryonic tendon fibroblasts synthesise a tendon-like construct comprised of collagen fibrils arranged in parallel bundles. Investigations using polarised light microscopy, scanning electron microscopy and fluorescence microscopy showed that tendon constructs contained a regular pattern of wavy collagen fibrils. Tensile testing indicated that this superstructure was a form of embryonic crimp producing a characteristic toe region in the stress–strain curves. Furthermore, contraction of tendon fibroblasts was the critical factor in the buckling of collagen fibrils during the formation of the crimp structure. Using these biological data, a finite element model was built that mimics the contraction of the tendon fibroblasts and monitors the response of the Extracellular matrix. The results show that the contraction of the fibroblasts is a sufficient mechanical impulse to build a planar wavy pattern. Furthermore, the value of crimp wavelength was determined by the mechanical properties of the collagen fibrils and inter-fibrillar matrix. Increasing fibril stiffness combined with constant matrix stiffness led to an increase in crimp wavelength. The data suggest a novel mechanism of crimp formation, and the finite element model indicates the minimum requirements to generate a crimp structure in embryonic tendon.  相似文献   

11.
The development and evolution of multicellular animals relies on the ability of certain cell types to synthesise an extracellular matrix (ECM) comprising very long collagen fibrils that are arranged in very ordered 3-dimensional scaffolds. Tendon is a good example of a highly ordered ECM, in which tens of millions of collagen fibrils, each hundreds of microns long, are synthesised parallel to the tendon long axis. This review highlights recent discoveries showing that the assembly of collagen fibrils in tendon is hierarchical, and involves the formation of fairly short "collagen early fibrils" that are the fusion precursors of the very long fibrils that occur in mature tendon.  相似文献   

12.
D A Parry  A S Craig 《Biopolymers》1978,17(4):843-845
Earlier studies by the authors showed that the collagen fibrils in rat-tail tendon have a bi-modal distribution of fibril diameters from a time shortly after birth through to the onset of maturity at about 3–4 months. Present work has extended those observations for rats up to the age of 2 years. Histograms of the fibril diameter distributions for mature tail tendon and direct electron microscope observations show that the fibrils break down as the tendon ages. Further work on the constant diameter subfibrils of diameter 140 Å described previously, has confirmed that these are part of the elastic fibers present in tendon at all ages. It has been shown that there is relatively little variation in the collagen fibril diameter distribution as a function of the position of the specimen in the tail, and as the measured percentage of the area taken by the collagen fibrils present at any particular point. Estimation of the fibrillar collagen content of rat-tail tendon as a function of age indicates that it increases steadily from birth and reaches a maximum at the onset of maturity, beyond which the fibrillar collagen content appears to remain constant.  相似文献   

13.
The functional properties of tendon require an extracellular matrix (ECM) rich in elongated collagen fibrils in parallel register. We sought to understand how embryonic fibroblasts elaborate this exquisite arrangement of fibrils. We show that procollagen processing and collagen fibrillogenesis are initiated in Golgi to plasma membrane carriers (GPCs). These carriers and their cargo of 28-nm-diam fibrils are targeted to previously unidentified plasma membrane (PM) protrusions (here designated "fibripositors") that are parallel to the tendon axis and project into parallel channels between cells. The base of the fibripositor lumen (buried several microns within the cell) is a nucleation site of collagen fibrillogenesis. The tip of the fibripositor is the site of fibril deposition to the ECM. Fibripositors are absent at postnatal stages when fibrils increase in diameter by accretion of extracellular collagen, thereby maintaining parallelism of the tendon. Thus, we show that the parallelism of tendon is determined by the late secretory pathway and interaction of adjacent PMs to form extracellular channels.  相似文献   

14.
The formation of collagen fibrils, fibril bundles, and tissue-specific collagen macroaggregates by chick embryo tendon fibroblasts was studied using conventional and high voltage electron microscopy. During chick tendon morphogenesis, there are at least three extracellular compartments responsible for three levels of matrix organization: collagen fibrils, bundles, and collagen macroaggregates. Our observations indicate that the initial extracellular events in collagen fibrillogenesis occur within narrow cytoplasmic recesses, presumably under close cellular regulation. Collagen fibrils are formed within these deep, narrow recesses, which are continuous with the extracellular space. Where these narrow recesses fuse with the cell surface, it becomes highly convoluted with folds and processes that envelope forming fibril bundles. The bundles laterally associate and coalesce, forming aggregates within a third cell-defined extracellular compartment. Our interpretation is that this third compartment forms as cell processes retract and cytoplasm is withdrawn between bundles. These studies define a hierarchical organization within the tendon, extending from fibril assembly to fascicle formation. Correlation of different levels of extracellular compartmentalization with tissue architecture provides insight into the cellular controls involved in collagen fibril and higher order assembly and a better understanding of how collagen fibrils are collected into structural groups, positioned, and woven into functional tissue-specific collagen macroaggregates.  相似文献   

15.
Monoclonal antibodies that recognize an epitope within the triple helix of type III collagen have been used to examine the distribution of that collagen type in human skin, cornea, amnion, aorta, and tendon. Ultrastructural examination of those tissues indicates antibody binding to collagen fibrils in skin, amnion, aorta, and tendon regardless of the diameter of the fibril. The antibody distribution is unchanged with donor age, site of biopsy, or region of tissue examined. In contrast, antibody applied to adult human cornea localizes to isolated fibrils, which appear randomly throughout the matrix. These studies indicate that type III collagen remains associated with collagen fibrils after removal of the amino and carboxyl propeptides, and suggests that fibrils of skin, tendon, and amnion (and presumably many other tissues that contain both types I and III collagens) are copolymers of at least types I and III collagens.  相似文献   

16.
Three-dimensional ultrastructure of human tendons.   总被引:1,自引:0,他引:1  
The three-dimensional ultrastructure of human tendons has been studied. Epitenon and peritenon consist of a dense network of longitudinal, oblique and transversal collagen fibrils crossing the tendon fibres. The internal structure of tendon fibres is also complex. The collagen fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibrils do not run only parallel but also cross each other forming spirals (plaits). These fibril bundles are bound together by a three-dimensional collagen fibril network of endotenon. In the myotendinous junction the surface of the muscle cells form processes. A network of tendineal collagen fibrils fills the recesses between the muscle cell processes penetrating the basement membrane of these processes. This complex ultrastructure of human tendons most likely offers a good buffer system against longitudinal, transversal, horizontal as well as rotational forces during movement and activity.  相似文献   

17.
It is established fact that type I collagen spontaneously self-assembles in vitro in the absence of cells or other macromolecules. Whether or not this is the situation in vivo was unknown. Recent evidence shows that intracellular cleavage of procollagen (the soluble precursor of collagen) to collagen can occur in embryonic tendon cells in vivo, and when this occurs, intracellular collagen fibrils are observed. A cause-and-effect relationship between intracellular collagen and intracellular fibrils was not established. Here we show that intracellular cleavage of procollagen to collagen occurs in postnatal murine tendon cells in situ. Pulse-chase analyses showed cleavage of procollagen to collagen via its two propeptide-retained intermediates. Furthermore, immunoelectron microscopy, using an antibody that recognizes the triple helical domain of collagen, shows collagen molecules in large-diameter transport compartments close to the plasma membrane. However, neither intracellular fibrils nor fibripositors (collagen fibril-containing plasma membrane protrusions) were observed. The results show that intracellular collagen occurs in murine tendon in the absence of intracellular fibrillogenesis and fibripositor formation. Furthermore, the results show that murine postnatal tendon cells have a high capacity to prevent intracellular collagen fibrillogenesis.  相似文献   

18.
The standard model for the structure of collagen in tendon is an ascending hierarchy of bundling. Collagen triple helices bundle into microfibrils, microfibrils bundle into subfibrils, and subfibrils bundle into fibrils, the basic structural unit of tendon. This model, developed primarily on the basis of x-ray diffraction results, is necessarily vague about the cross-sectional organization of fibrils and has led to the widespread assumption of laterally homogeneous closepacking. This assumption is inconsistent with data presented here. Using atomic force microscopy and micromanipulation, we observe how collagen fibrils from tendons behave mechanically as tubes. We conclude that the collagen fibril is an inhomogeneous structure composed of a relatively hard shell and a softer, less dense core.  相似文献   

19.
Fibromodulin is a member of a family of connective tissue glycoproteins/proteoglycans containing leucine-rich repeat motifs. Several members of this gene family bind to fibrillar collagens and are believed to function in the assembly of the collagen network in connective tissues. Here we show that mice lacking a functional fibromodulin gene exhibit an altered morphological phenotype in tail tendon with fewer and abnormal collagen fiber bundles. In fibromodulin-null animals virtually all collagen fiber bundles are disorganized and have an abnormal morphology. Also 10-20% of the bundles in heterozygous mice are similar to the abnormal bundles in fibromodulin-null tail tendon. Ultrastructural analysis of Achilles tendon from fibromodulin-null mice show collagen fibrils with irregular and rough outlines in cross-section. Morphometric analysis show that fibromodulin-null mice have on the average thinner fibrils than wild type animals as a result of a larger preponderance of very thin fibrils in an overall similar range of fibril diameters. Protein and RNA analyses show an approximately 4-fold increase in the content of lumican in fibromodulin-null as compared with wild type tail tendon, despite a decrease in lumican mRNA. These results demonstrate a role for fibromodulin in collagen fibrillogenesis and suggest that the orchestrated action of several leucine-rich repeat glycoproteins/proteoglycans influence the architecture of collagen matrices.  相似文献   

20.
Collagen self-assembly and the development of tendon mechanical properties   总被引:1,自引:0,他引:1  
The development of the musculoskeleton and the ability to locomote requires controlled cell division as well as spatial control over deposition of extracellular matrix. Self-assembly of procollagen and its final processing into collagen fibrils occurs extracellularly. The formation of crosslinked collagen fibers results in the conversion of weak liquid-like embryonic tissues to tough elastic solids that can store energy and do work. Collagen fibers in the form of fascicles are the major structural units found in tendon. The purpose of this paper is to review the literature on collagen self-assembly and tendon development and to relate this information to the development of elastic energy storage in non-mineralizing and mineralizing tendons. Of particular interest is the mechanism by which energy is stored in tendons during locomotion. In vivo, collagen self-assembly occurs by the deposition of thin fibrils in recesses within the cell membrane. These thin fibrils later grow in length and width by lateral fusion of intermediates. In vitro, collagen self-assembly occurs by both linear and lateral growth steps with parallel events seen in vivo; however, in the absence of cellular control and enzymatic cleavage of the propeptides, the growth mechanism is altered, and the fibrils are irregular in cross section. Results of mechanical studies suggest that prior to locomotion the mechanical response of tendon to loading is dominated by the viscous sliding of collagen fibrils. In contrast, after birth when locomotion begins, the mechanical response is dominated by elastic stretching of crosslinked collagen molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号