首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The fatty acid synthetase from lactating rat mammary gland is shown to consist of two polyfunctional polypeptides of similar molecular weight (about 220,000); a 4'-phosphopantetheine residue is covalently bound to one, or both subunits. Limited trypsinization of the fatty acid synthetase releases on enzymatically active thioesterase component which has been purified and its properties studied. The thioesterase sediments in the ultracentrifuge as a single component of molecular weight 32,000; its sedimentation coefficient is 2.9 x 10-(13) s its diffusion coefficient 5.0 x 10-(7) cm2 s-(1). The thioesterase also elutes from a column of Sephadex G-75 as a single, symmetrical peak of constant specific activity. However, electrophoresis of the denatured thioesterase in the presence of sodium dodecyl sulfate reveals that the enzyme has been partially nicked during isolation. The kinetic data of the enzyme reaction were studied using palmityl-CoA as a model substrate. Solvent pH was found to affect both Vmax and Km (Km = 0.5 micron at pH 6.6, 2.5 micron at pH 8.0) wereas solvent ionic strength affected Vmax but no Km. The thioesterases from the fatty acid synthetases of rat liver and lactating mammary gland have identical physical properties, identical amino acid compositions, and are immunologically indistinguishable. Both thioesterases hydrolyze long chain, in preference to short chain, thioesters of CoA, an observation consistent with their role in regulation of the chain-terminating step in fatty acid synthesis by the parent multienzyme complexes.  相似文献   

4.
The acyl carrier protein domain of the chicken liver fatty acid synthase has been isolated after tryptic treatment of the synthase. The isolated domain functions as an acceptor of acetyl and malonyl moieties in the synthase-catalyzed transfer of these groups from their coenzyme A esters and therefore indicates that the acyl carrier protein domain exists in the complex as a discrete entity. The amino acid sequence of the acyl carrier protein was derived from analyses of peptide fragments produced by cyanogen bromide cleavage and trypsin and Staphylococcus aureus V8 protease digestions of the molecule. The isolated acyl carrier protein domain consists of 89 amino acid residues and has a calculated molecular weight of 10,127. The protein contains the phosphopantetheine group attached to the serine residue at position 38. The isolated acyl carrier protein peptide shows some sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the site of phosphopantetheine attachment, and shows extensive sequence homology with the acyl carrier protein from the uropygial gland of goose.  相似文献   

5.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

6.
Fatty acid synthase of animal tissue is a multifunctional enzyme comprised of two identical subunits, each containing seven partial activities and a site for the prosthetic group, 4'-phosphopantetheine (acyl carrier protein). We have recently isolated cDNA clones of chicken fatty acid synthase coding for the dehydratase, enoyl reductase, beta-ketoacyl reductase, acyl carrier protein, and thioesterase domains (Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.Y., and Wakil, S.J. (1989) J. Biol. Chem. 264, 3750-3757). To gain insight into the structure and function of the various domains, the portion of the cDNA coding for the acyl carrier protein and thioesterase domains was expressed in Escherichia coli by using an expression vector that utilizes the phage lambda PL promoter. The recombinant protein was efficiently expressed and purified to near homogeneity using anion-exchange and hydroxyapatite chromatography. As expected from the coding capacity of the cDNA expressed, the protein has a molecular weight of 43,000 and reacts with antithioesterase antibodies. The recombinant thioesterase was found to be enzymatically active and has the same substrate specificity and kinetic properties as the native enzyme of the multifunctional synthase. Treatment of the recombinant protein with alpha-chymotrypsin results in the cleavage of the acyl carrier protein and thioesterase domain junction sequence at exactly the same site as with native fatty acid synthase. The amino acid composition of the purified recombinant protein revealed the presence of 0.6 mol of beta-alanine/mol of protein, indicating partial pantothenylation of the recombinant acyl carrier protein domain. These results indicate that the expressed protein has a conformation similar to the native enzyme and that its folding into functionally active domains is independent of the remaining domains of the multifunctional synthase subunit. These conclusions are consistent with the proposal that the multifunctional synthase gene has evolved from fusion of component genes.  相似文献   

7.
A low molecular weight protein of less than 10, 000 Daltons has been isolated from Subunit I (β-ketoacyl thioester reductase) of the pigeon liver fatty acid synthetase complex and purified to homogeneity. This protein contains all of the [14C]-labeled pantetheine incorporated into the fatty acid synthetase on injection of [14C]-labeled pantetheine into pigeons. It also has one β-alanine and one sulfhydryl group. This protein is an acceptor of an acetyl group from acetyl-CoA and a malonyl group from malonyl-CoA in the presence of Subunit II (transacylase). In these respects it is very similar to E. coli acyl carrier protein.  相似文献   

8.
9.
We have characterized an acyl carrier protein (ACP) presumed to be involved in the synthesis of fatty acids in Streptomyces coelicolor A3(2). This is the third ACP to have been identified in S. coelicolor; the two previously characterized ACPs are involved in the synthesis of two aromatic polyketides: the blue-pigmented antibiotic actinorhodin and a grey pigment associated with the spore walls. The three ACPs are clearly related. The presumed fatty acid synthase (FAS) ACP was partially purified, and the N-terminal amino acid sequence was obtained. The corresponding gene (acpP) was cloned and sequenced and found to lie within 1 kb of a previously characterized gene (fabD) encoding another subunit of the S. coelicolor FAS, malonyl coenzyme A:ACP acyl-transferase. Expression of S. coelicolor acpP in Escherichia coli yielded several different forms, whose masses corresponded to the active (holo) form of the protein carrying various acyl substituents. To test the mechanisms that normally prevent the FAS ACP from substituting for the actinorhodin ACP, acpP was cloned in place of actI-open reading frame 3 (encoding the actinorhodin ACP) to allow coexpression of acpP with the act polyketide synthase (PKS) genes. Pigmented polyketide production was observed, but only at a small fraction of its former level. This suggests that the FAS and PKS ACPs may be biochemically incompatible and that this could prevent functional complementation between the FAS and PKSs that potentially coexist within the same cells.  相似文献   

10.
Acyl carrier proteins participate in the synthesis of fatty acids. Here we report the NMR resonances assignment of the acyl carrier protein domain of the Saccharomyces cerevisiae fatty acid synthase which corresponds to the fragment 138A-302L in the primary structure. The assignment will allow performing NMR studies with the aim to investigate the intrinsic dynamics of this protein, and to study the structural changes upon apo-holo transformation in order to unveil the mechanism of binding of the growing acyl chain.  相似文献   

11.
During the biosynthesis of the cyclopropyl amino acid coronamic acid from l-allo-Ile by the phytotoxic Pseudomonas syringae, the aminoacyl group covalently attached to the pantetheinyl arm of CmaA is shuttled to the HS-pantetheinyl arm of the protein CmaD by the aminoacyltransferase CmaE. CmaE will only recognize deacylated CmaA for initial complexation. The aminoacyl group becomes covalently attached to the active site Cys of CmaE and can then be transferred out to the holo pantetheinylated form of CmaD. Both l-Val/l-[14C]Val exchange studies and MALDI-TOF support a reversible shuttling process. Aminoacylated-S-CmaE will transfer the l-Val moiety to the HS-pantetheinyl arm of other T domains, including CytC2, BarA, and ArfA C2-A2-T2 but not to free HS-pantetheine. CmaD could be loaded with other amino acids, for example, l-Leu and l-Thr, by the action of heterologous donor T domains containing alternative aminoacyl groups. Additionally, CmaE is able to accept l-Phe as a substrate when presented on CmaD and is able to load this aminoacyl moiety onto heterologous T domains, expanding the potential for CmaE to be used as a tool for generating chemical diversity within an NRPS assembly line.  相似文献   

12.
Mitochondrial fatty acid synthesis is catalyzed by a dissociated fatty acid synthase similar to those of plant plastids and bacteria. The crystal structure of a mitochondrial beta-ketoacyl-[acyl carrier protein] synthase (mtKAS), namely that from Arabidopsis thaliana, has been determined for the first time. This enzyme accomplishes the vital condensation steps in constructing fatty acid carbon skeletons. The product profile of mtKAS is unusual in that C8 and C(14-16) fatty acyl chains predominate. An enzyme architecture that likely is the basis for the observed bimodal profile of mtKAS products can be derived from the shape of the acyl binding pocket.  相似文献   

13.
Proteolysis of pigeon liver fatty acid synthetase with elastase cleaves the thioesterase component and an acyl carrier protein-containing peptide from the multienzyme complex. These proteins are then separated in one step by gel filtration on a Sephadex G-75 column. Each of the eluted proteins is homogeneous, as determined by polyacrylamide gel electrophoresis. The molecular weight of each has been estimated to be 36,000 and 12,000 daltons, respectively.  相似文献   

14.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

15.
Epigallocatechin gallate (EGCG), a major compound from green tea, reversibly inhibits beta-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli. In this study, we found that EGCG exhibited an atypical time-dependent inhibition of FabG, which possibly resulted from the EGCG-induced aggregation of FabG. It was observed that FabG inactivation and aggregation occurred nearly simultaneously, with a lag time that decreased with increasing EGCG concentration. These results suggest that some chemical reactions, required for aggregation and inactivation, occurred during the lag time. Since EGC was detected by HPLC after the incubation of EGCG with FabG, EGCG probably covalently modified FabG. These further results showed that 1 tetramer of FabG must be modified by several, possibly 4, EGCG molecules before the formation of FabG aggregates. FabG aggregation was a first-order reaction independent of protein concentration. Due to an initial lag time, the first-order rate of aggregation gradually increased, reaching a maximal and constant value. The effect of increasing concentration of EGCG on the first-order rate constant for aggregation indicated that EGCG bound to FabG by affinity labeling. Based on the results, we propose a mechanism for the interaction of EGCG with FabG:EGCG first binds reversibly to each subunit of FabG, followed by covalent modification and then aggregation of the 4 EGCG-modified subunits.  相似文献   

16.
Rabbit mammary fatty acid synthase was labelled in the acyl transferase domain(s) by the formation of the O-ester intermediates after incubation with [14C]acetyl- or malonyl-CoA. Elastase peptides containing the labelled acyl groups were isolated using high performance liquid chromatography and sequenced by fast atom bombardment mass spectrometry. An identical peptide (acyl-Ser---Leu---Gly---Glu---Val---Ala) was obtained after labelling with acetyl- or malonyl-CoA. This confirms the hypothesis that, unlike Escherichia coli or yeast, a single transferase catalyses the transfer of both acetyl- and malonyl-groups in the mammalian complex. The sequence at this site is compared with that around the active serine in other acyl transferases and hydrolases.  相似文献   

17.
A fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl) maleimide, was used to label the acyl carrier site of the bacterial fatty acid synthetase from Brevibacterium ammoniagenes. The reagent bound preferentially to the 4'-phosphopantetheine thiol group of the acyl carrier domain and irreversively inactivated the enzyme. The modified enzyme was cleaved by proteinases for the mapping of the labeled site. The fluorescent fragment was readily detected on a polyacrylamide gel after electrophoresis. The region of 45 kDa containing the 4'-phosphopantetheine was located on the polypeptide at around two-thirds of the full length from the N-terminal.  相似文献   

18.
In an effort to facilitate studies of the reaction involved in the removal of fatty acids from acyl proteins, we have synthesized an octanoic acid ester of doubly blocked serine, specifically octanoyl N-carbobenzoxy-L-serine-benzyl ester (octanoyl boc-serine), and used it as a substrate to guide the purification of an esterase from rat lung. The esterase was purified 228-fold by column chromatography on DE-52 cellulose, hydroxylapatite, octyl-Sepharose, and concanavalin A-Sepharose and by HPLC gel filtration. The final enzyme preparation ran as a single 77,000-Da band when subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited a single symmetrical peak (sedimentation coefficient, 4.5 S) when centrifuged through a sucrose density gradient (empirical Mr, 63,000). The esterase is an acidic protein, pI 4.1, and is very active against p-nitrophenyl esters comprised of C4-C14 fatty acids; the highest specific activity (26.5 mumol/min/mg) was obtained using p-nitrophenyl caprylate as substrate. The pH optimum of the lung esterase is near 8.0 and the activity on octanoyl boc-serine is maximum when 0.3% (w/v) Myrj-52 is included in the assay medium. The activity of the esterase is not dependent on calcium ions. The enzyme does not remove acyl groups from the G-protein of vesicular stomatitis virus or the proteolipid of bovine brain. The possible role of the esterase in the metabolism of acylated proteins is considered.  相似文献   

19.
Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3'5'-ADP, a product of AcpS, at 2.0 and 1.9 A resolution, respectively. The crystal structure reveals an alpha/beta fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity.  相似文献   

20.
The phosphopantetheine thiol of rabbit mammary fatty acid synthase was specifically alkylated using chloro[14C]acetyl-CoA and a radioactive fragment generated by limited elastase digestion of the modified protein was purified by gel filtration. We have previously mapped this fragment to an internal location in the 250 000-Mr polypeptide adjacent to the thioesterase domain [Eur. J. Biochem. 130, 185-193 (1983)]. The purified fragment had apparent molecular weights of 23 000 by gel filtration and 10 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, while amino acid analysis indicated a minimal molecular weight of 10 400. We have determined the amino acid sequence of the first 64 residues of the fragment. The phosphopantetheine moiety is esterified to a serine at residue 38 in the sequence. When the sequences of the rabbit acyl carrier fragment and the 8847-Mr acyl carrier protein of Escherichia coli are aligned, 17 out of 64 residues are identical. These results suggest that the limited proteolysis delineates an internal acyl carrier domain within the rabbit protein and provide the first clear evidence that multifunctional fatty acid synthases have arisen by fusion of ancestral monofunctional proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号