首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Numerous proteases have been shown to catalyze the precisely-timed and rapid turnover of key cellular proteins. Often these regulatory proteases are either energy-dependent or intramembrane-cleaving. In archaea, two different types of energy-dependent proteases have been characterized: 20S proteasomes associated with proteasome-activating nucleotidases and membrane-associated Lon proteases. Interestingly, homologs of all three mechanistic classes of intramembrane-cleaving proteases are widely distributed in archaea. Similar to their eucaryal and bacterial counterparts, members of these uncharacterized proteases might promote the controlled release of membrane-anchored regulatory proteins or liberate small peptide reporters and/or effectors that function in cell signaling.  相似文献   

2.
The evolution of digestive proteases during larval development of Rhynchophorus ferrugineus (Olivier, 1790) has been studied. A progressive increase of protease activity has been found. The optimum pH for proteolytic activity against azocasein was determined. Caseinograms revealed an active complex of alkaline proteases from the early stages of the development. From the apparent molecular masses, three groups of proteases have been found - high molecular-mass proteases, medium molecular-mass proteases, and low molecular-mass proteases. Studies using specific protease inhibitors showed the major presence of serine proteases in gut extracts. The results obtained from larvae reared on different substrates have made possible a comparative assessment of the influence of diet on the development of the digestive enzymatic system. Larvae fed on an artificial diet showed a complete pattern of digestive proteases. Data suggest that this diet seems to be suitable for future research with this insect pest.  相似文献   

3.
Endoproteolysis of beta-amyloid precursor protein (betaAPP) and Notch requires conserved aspartate residues in presenilins 1 and 2 (PS1 and PS2). Although PS1 and PS2 have therefore been proposed to be aspartyl proteases, no homology to other aspartyl proteases has been found. Here we identify homology between the presenilin active site and polytopic aspartyl proteases of bacterial origin, thus supporting the hypothesis that presenilins are novel aspartyl proteases.  相似文献   

4.
Trematodes, also known as flukes, are phylogenetically ancient parasitic organisms. Due to their importance as human and veterinary parasites, their proteins have been investigated extensively as drug and vaccine targets. Among those, proteases, as crucial enzymes for parasite survival, are considered candidate molecules for anti-parasitic interventions. Surprisingly however, trematode serine proteases, in comparison with other groups of proteases, are largely neglected. Genes encoding serine proteases have been identified in trematode genomes in significant abundance, but the biological roles and biochemical functions of these proteases are poorly understood. However, increasing volumes of genomic and proteomic studies, and accumulated experimental evidence, indicate that this class of proteases plays a substantial role in host–parasite interactions and parasite survival. Here, we discuss in detail serine proteases at genomic and protein levels, and their known or hypothetical functions.  相似文献   

5.
Evolution in the structure and function of aspartic proteases   总被引:22,自引:0,他引:22  
Aspartic proteases (EC3.4.23) are a group of proteolytic enzymes of the pepsin family that share the same catalytic apparatus and usually function in acid solutions. This latter aspect limits the function of aspartic proteases to some specific locations in different organisms; thus the occurrence of aspartic proteases is less abundant than other groups of proteases, such as serine proteases. The best known sources of aspartic proteases are stomach (for pepsin, gastricsin, and chymosin), lysosomes (for cathepsins D and E), kidney (for renin), yeast granules, and fungi (for secreted proteases such as rhizopuspepsin, penicillopepsin, and endothiapepsin). These aspartic proteases have been extensively studied for their structure and function relationships and have been the topics of several reviews or monographs (Tang: Acid Proteases, Structure, Function and Biology. New York: Plenum Press, 1977; Tang: J Mol Cell Biochem 26:93-109, 1979; Kostka: Aspartic Proteinases and Their Inhibitors. Berlin: Walter de Gruyter, 1985). All mammalian aspartic proteases are synthesized as zymogens and are subsequently activated to active proteases. Although a zymogen for a fungal aspartic protease has not been found, the cDNA structure of rhizopuspepsin suggests the presence of a "pro" enzyme (Wong et al: Fed Proc 44:2725, 1985). It is probable that other fungal aspartic proteases are also synthesized as zymogens. It is the aim of this article to summarize the major models of structure-function relationships of aspartic proteases and their zymogens with emphasis on more recent findings. Attempts will also be made to relate these models to other aspartic proteases.  相似文献   

6.
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.  相似文献   

7.
Several chloroplast proteases have been characterized in recent years. The ATP-dependent chloroplast proteases Clp and FtsH stand out because they form multi-subunit complexes consisting of different gene products. Surprisingly, both green and non-green plastids appear to contain a similar soluble Clp core proteolytic complex, consisting of five ClpP proteases, their non-catalytic ClpR homologs, and two ClpS homologs that have unknown function. Analyses of single and double FtsH1, FtsH2, FtsH5 and FtsH8 mutants, and overexpression of FtsH proteins in these Arabidopsis thaliana mutants show partial redundancies within pairs of closely related FtsH thylakoid proteins. The presence of at least one member of each pair is essential for functional accumulation. Other chloroplast proteases have also been identified recently. Future challenges include the identification of substrate recognition mechanisms and elucidating the role of proteases in chloroplast biogenesis and function.  相似文献   

8.
Cutting edge of chloroplast proteolysis   总被引:12,自引:0,他引:12  
Chloroplasts have a dynamic protein environment and, although proteases are presumably major contributors, the identities of these crucial regulatory proteins have only recently been revealed. There are defined proteases within each of the major chloroplast compartments: the ATP-dependent Clp and FtsH proteases in the stroma and stroma-exposed thylakoid membranes, respectively, the ATP-independent DegP proteases within the thylakoid lumen and on both sides of thylakoid membranes, and the SppA protease on the stromal side of the thylakoid. All four types are homologous to proteases characterized in bacteria, but most have many isomers in higher plants. With such diversity, the challenge is to link the mode of action of each protease to the chloroplast enzymes and regulatory proteins that it targets.  相似文献   

9.
Chitin containing sorbents have been obtained for isolation and purification of serine proteases. Serine proteases from Bacillus subtilis have been purified 4-5 times and commercial preparations of trypsin and chymotrypsin 1.5-2 times by chromatography on nondeproteinized chitin. On the benzylated derivative of nondeproteinized chitin complete separation of trypsin and chymotrypsin has been achieved by chromatography of crude pancreatin. It has been shown that the protein moiety of chitin is important for preferential sorption of serine type proteases.  相似文献   

10.
The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.  相似文献   

11.
Lon-, Clp- and FtsH-like proteases, members of three families of ATP-dependent proteases derived from bacterial ancestors, have been identified in plant mitochondria. Classifications of mitochondrial-specific paralogues of plant ATP-dependent proteases, based on targeting prediction programs and different experimental methods, are compared. Accumulating evidence points to similarities in the structure and the mechanisms of action used by various ATP-dependent proteases. Therefore, before focusing on plant mitochondrial ATP-dependent proteases, the paper discusses general features of ATP-dependent proteases. To date, information about structure and function of plant mitochondrial Lon-like, Clp-like and FtsH-like proteases is rather scarce, but indicates that these enzymes, like their bacterial and eukaryotic homologues, combine proteolytic and chaperone-like activities to form mitochondrial protein quantity and quality control system in plants.  相似文献   

12.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

13.
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer’s. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in “one pot”. We believe that this review would be of critical importance to the researchers from different scientific domains.  相似文献   

14.
At least three genes that play crucial roles in dorsal-ventral patterning of the Drosophila embryo appear to encode extracellular proteases. These proteases are involved in the generation of localized extracellular ligands for membrane receptors. Because the sequences of these gene products closely resemble those of mammalian enzymes that have been studied in detail biochemically, it is possible to draw on the wealth of information on the biochemical mechanisms that regulate protease activity to make inferences about how proteases can be used to generate spatial asymmetries within fields of cells.  相似文献   

15.
The investigations performed over recent few years have proved the existence of caspase-like proteases in plants. Three groups of caspase-like proteases: metacaspases, legumain family proteases (VPEs) and saspases have been identified and characterized in plants so far. A considerable amount of evidence supports the role of these enzymes in programmed cell death (PCD) occurring during plant development, their organ senescence as well as hypersensitive response (HR) after pathogen attack. Current knowledge of these enzyme molecular and biochemical structures is summarized in the paper. The homology of caspase-like proteases to animal caspases has been also indicated. Some future perspectives of research concerning the signal pathway during PCD, the regulation of activity and mode of action of these proteases are presented in the article.  相似文献   

16.
Cysteine proteases have been identified as promising targets for the development of antiparasitic chemotherapy. An attractive aspect of these enzymes is their widespread importance in both protozoan and helminth parasites of domestic animals and humans. Concerns about the ability to selectively inhibit parasite proteases without affecting host homologues have been addressed in recent studies of Trypanosoma cruzi and Plasmodium falciparum. Significant data on half-life, metabolism, pharmacokinetics and safety have been accumulated. Differential uptake of proteases by parasitic organisms versus host cells, and relatively less redundancy in parasite protease gene families, may be two factors which contribute to the successful treatment of animal models of infection.  相似文献   

17.
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.  相似文献   

18.
The properties of two extracellular proteases of Aspergillus ochraceus VKM F-4104D micromycete with plasmin-like activity have been studied. It has been shown that the enzymes differ in pI (5.05 and 6.83) and have similar molecular weights (about 32 and 35 kDa), pH optima (pH 9.0–10.00 at 45°C), and specificities of action on a limited set of chromogenic peptide substrates of trypsin-like proteases. According to inhibitory analysis, both enzymes belong to the serine proteases. Their properties appeared to be similar to those of the protease, protein C activator, which is the main proteolytic enzyme of A. ochraceus VKM F-4104D. Most likely, proteases of this micromyсetes are isoenzymes.  相似文献   

19.
20.
Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号