首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in the geometry of the external flight apparatus of birds are beneficial for different behaviors. Long-distance flight is less costly with more pointed wings and shorter tails; however these traits decrease maneuverability at low speeds. Selection has led to interspecific differences in these and other flight apparatuses in relation to migration distance. If these principles are general, how are the external flight apparatus within a partially migratory bird species shaped in which individuals either migrate or stay at their breeding grounds? We resolved this question by comparing the wing pointedness and tail length (relative to wing length) of migrant and resident European blackbirds (Turdus merula) breeding in the same population. We predicted that migrant blackbirds would have more pointed wings and shorter tails than residents. Contrary to our predictions, there were no differences between migrants and residents in either measure. Our results indicate that morphological differences between migrants and residents in this partially migratory population may be constrained.  相似文献   

2.
In insects, wing shape and body size are correlated with several aspects of behaviour, and the optimal morphology of wings is a trade-off between a number of functional demands in relation to behaviour (e.g. foraging, migration and sexual display). Dragonflies are spectacularly skilful flyers and present a range of different wing shapes, but to date, no detailed studies have been conducted in this group on wing length allometry in relation to body size. In this paper, we use published data on body length and wing length in all European and North American dragonflies to investigate differences in wing length allometries among Odonata taxa (suborders and families) and to relate these to behavioural patterns. We found different wing allometries between Zygoptera and Anisoptera, which are probably related to the flight mode and wing form of the two suborders. Among the Anisoptera, the Libellulidae showed a distinct wing length allometry from all other anisopteran families and migrants differed from non-migrant species. The first dichotomy is likely to reflect the adaptation of wing morphology of Libellulidae to sit-and-wait behaviour and to brief foraging flights (most species of this family are perchers) with respect to all other families, members of which are typically flyers. The second dichotomy reflects the trend of migrating species to have relatively longer wings than non-migrating members of the same family. Finally, wing length allometry differed among all the zygopteran families analysed, and this pattern suggested that each family evolved a particular wing morphology in response to peculiarities in behaviour, habitat and flight mode.  相似文献   

3.
The alula is a small structure present on the leading edge of bird wings and is known to enhance lift by creating a small vortex at its tip. Alula size vary among birds, but how this variation is associated with the function of the alula remains unclear. In this study, we investigated the relationship between the size and shape of the alula and the features of the wing in the Laridae and Sternidae. Laridae birds have generally longer wings and greater loadings than Sternidae birds. The two families differed in the relationships between body size or wing length and the size or shape of the alula. In the Laridae, the aspect ratio of the alula was smaller in the species that have relatively longer wings, but the pattern was opposite in the Sternidae. The aspect ratio of the alula was greater in the species that are relatively heavier in the Sternidae but not in the Laridae. Combined, these results suggest that the species with high loading potential and long wings exhibit long alula. We hypothesize that heavier species may benefit from having longer alula if they perform flights with higher attack angles than lighter species, as longer alula would better suppress flow separation at higher attack angles. Our results suggest that the size and shape of the alula can be explained in one allometric landscape defined by wing length and loading in these two closely related families of birds with similar wing shapes.  相似文献   

4.
Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein‐joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein‐joints that are double‐sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single‐sided vein‐joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
6.
Many species of insects exhibit wing dimorphism, one morph havingfully developed wings and the other morph having reduced wingsand being incapable of flight. These wing dimorphisms providevisible manifestations of migratory polymorphisms. Since wingedindividuals do not, in principle, have to fly, the existenceof forms with reduced wings suggests that there is a tradeoffbetween flight capability and other fitness components. Comparisonsof the life histories of the fully winged and wing reduced morphsdemonstrate that this tradeoff is most commonly expressed asa decrease in the age of first reproduction and increased fecundityin the morph with reduced wings. Given these tradeoffs, theevolution of wing dimorphism will depend upon its genetic basis,including correlations with other life history components. Areview of the recent literature suggests that the heritabilityof wing morphology is high, and we suggest that this high heritabilitycould be maintained, in part, by antagonistic pleiotropy. In dimorphic species, the winged morph is generally consideredto be the migrant form. However, there are significant correlations,both within and among species, between the proportion of wingedindividuals, the proportion of winged individuals with functionalflight muscles, and the flight propensity of those individuals.This suggests that the proportion of winged individuals andthe propensity of the winged morph to migrate are intimatelyconnected at both the physiological and population level. Therefore,the study of the evolution of wing dimorphism is important notonly in its own right but also as a model of how migratory propensityevolves in monomorphically winged species.  相似文献   

7.
We studied morphological differentiation in the flight apparatus of the four currently recognised sub-species of Northern Wheatears, Oenanthe oenanthe. Considering all measured birds without assigning them a priori to any sub-species we found a clinal morphological shift. Relative wing length, wing pointedness, and the degree of tail forking were positively correlated with migratory distance, whereas tail length (relative to wing length) was negatively correlated. The large-sized, long-distance migrant "Greenland" Wheatear, O. o. leucorhoa, is characterized by relatively longer, broader and more pointed wings and more forked tails, similar to the smaller-sized nominate Northern Wheatear, O. o. oenanthe, from North Europe, Siberia and Russia. In contrast, the short distance migrant "Seebohm's" Wheatear, O. o. seebohmi, from northwest Africa, possesses much rounder wings, and the tail is relatively longer and less forked. Sub-species with intermediate migratory habits (different populations of nominate Northern Wheatear, O. o. oenanthe, and "Mediterranean" Northern Wheatear, O. o. libanotica) show, as expected, intermediate features according to their intermediate migratory behaviour. Our results are congruent with other inter- and intraspecific studies finding similar adaptations for energy-effective flight in relation to migration distance (morphological migratory syndrome).  相似文献   

8.
In many passerines, juveniles have shorter and more rounded wings than adults. Given that (1) long and pointed wings improve endurance in migratory flights, (2) shorter and rounded wings improve manoeuvrability, and (3) juvenile birds are more vulnerable to predators than adults, it has been hypothesised that ontogenetic variation in wing shape results from a greater importance of predation avoidance relative to migration performance during the first year of life. If so, wing shape should not change with age in the absence of migration-related selection for longer and more pointed wings. We test this by studying the variation with respect to age in wing length and wing pointedness of migratory and sedentary Blackcaps wintering in southern Spain. Migratory Blackcaps had longer and more pointed wings than sedentary Blackcaps. Juveniles had shorter wings than adults in migratory populations, but not in sedentary populations. The variation with age in wing pointedness was less pronounced, and was found in migratory females only. These differences between the two traits could be related to a stronger selection for pointed wings than for longer wings with increasing distance of migration, and to an increased migratoriness of females in partially migratory Blackcap populations. We hypothesise that, in migratory Blackcaps, a shorter and more rounded wing in juveniles could be selected for if the decrease in predation rate compensated for the somewhat greater costs of the first migration attempt. On the other hand, there are no costs of migration in sedentary Blackcaps, which hence maintain a similar wing shape, giving high manoeuvrability, both as juveniles and as adults.  相似文献   

9.
The Drosophila wing has been used as a model in studies of morphogenesis and evolution; the use of such models can contribute to our understanding of mechanisms that promote morphological divergence among populations and species. We mapped quantitative trait loci (QTL) affecting wing size and shape traits using highly inbred introgression lines between D. simulans and D. sechellia, two sibling species of the melanogaster subgroup. Eighteen QTL peaks that are associated with 12 wing traits were identified, including two principal components. The wings of D. simulans and D. sechellia significantly diverged in size; two of the QTL peaks could account for part of this interspecific divergence. Both of these putative QTLs were mapped at the same cytological regions as other QTLs for intraspecific wing size variation identified in D. melanogaster studies. In these regions, one or more loci could account for intra- and interspecific variation in the size of Drosophila wings. Three other QTL peaks were related to a pattern of interspecific variation in wing size and shape traits that is summarized by one principal component. In addition, we observed that female wings are significantly larger and longer than male wings and the second, fourth and fifth longitudinal veins are closer together at the distal wing area. This pattern was summarized by another principal component, for which one QTL was mapped.  相似文献   

10.
不同地区望天树种群形态特征的比较   总被引:3,自引:0,他引:3  
朱华   《广西植物》1992,12(3):269-271
本文比较了间断分布在云南南部、东南部和广西西南部的望天树种群的形态特征,三者的差异主要在果翅上。云南南部的望天树果翅短而宽,广西西南部的果翅长而窄,云南东南部的望天树居中;云南南部的望天树果翅长度在广西望天树的翅长变幅内,翅宽虽超出后者变幅,却在云南东南部的翅宽变幅内。三者在形态特征上有统计学的差异,但变异是连续的,在分类学上区分为三个变种还嫌不足。  相似文献   

11.
Migration is an energetically expensive and hazardous stage of the annual cycle of non‐resident avian species, and requires certain morphological adaptations. Wing shape is one of the morphological traits that is expected to be evolutionarily shaped by migration. Aerodynamic theory predicts that long‐distance migrants should have more pointed wings with distal primaries relatively longer than proximal primaries, an arrangement that minimizes induced drag and wing inertia, but this prediction has mostly been tested in passerine species. We applied the comparative method of phylogenetically independent contrasts to assess convergent evolution between wing shape and migration within shorebirds. We confirmed the assumption that long‐distance migrants have less rounded wings than species migrating shorter distances. Furthermore, wing roundedness negatively correlates with fat load and mean distance of migratory flights, the basic components of migration strategies. After controlling for interspecific differences in body size, we found no support for a link between wing length and migration, indicating that wing shape is a more important predictor of shorebird migratory behaviour than wing length. The results suggest that total migration distance and migratory strategy may simultaneously act on the evolution of wing shape in shorebirds, and possibly in other avian species.  相似文献   

12.
The majority of migrant monarchs (Danaus plexippus) from the eastern USA and south‐eastern Canada migrate to Mexico; however, some of them migrate to Cuba. Cuban migrants hatch in south‐east Canada and eastern USA, and then engage in a southern trip of 4000 km to this Caribbean island. In Cuba, these migrants encounter resident monarchs, which do not migrate, and instead move between plant patches looking for nectar, mating partners and host plants. These differences in flight behaviour between migrant and resident Cuban monarchs may have resulted in different selective pressures in the wing size and shape. Two modes of selection were tested, directional and stabilizing. In addition, wing condition was compared between these two groups. Monarchs were collected for 4 years in Cuba and classified as resident or migrant using two independent techniques: Thin‐layer chromatography and stable hydrogen and stable carbon isotope measurements. Wing size was measured and wing condition was rated in the butterflies. Fourier analysis and wing angular measurements were used to assess wing shape differences. Migrants have significantly longer wings than residents, thus supporting the action of directional selection on wing size. In addition, directional selection acts on wing shape; that is, migrant females differ significantly from resident females in their wing angles. However, the results do not support the action of stabilizing selection: there was no significant variance between migrant and resident monarchs in their wing size or shape. Also, migrant females and males differed in wing condition as a result of differences in flight behaviour. In conclusion, eastern North American monarchs offer a good opportunity to study the selective pressures of migration on wing morphology and how different migratory routes and behaviours are linked to wing morphology and condition. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 605–616.  相似文献   

13.
用扫描电镜观察八种散白蚁和一种异白蚁有翅成虫翅面微刻点.结果表明,除了观察到文献中已报道的微刻点类型(舌状乳突、尖头状乳突和粉刺状突起)外,还发现有小刺突和毛.而且同一种白蚁翅背、腹面的微刻点类型存在明显的差异.根据微刻点类型就细颚异白蚁的分类地位作了初步探讨.  相似文献   

14.
The fruit-flies Drosophila paranaensis and Drosophila mercatorum pararepleta are sibling species belonging to the repleta group. Females of these two species are normally considered to be morphologically indistinguishable while males only differ consistently in the morphology of their genitalia. These species are sympatric throughout a large area of their geographic distribution. In this study, we investigated the degree of morphological divergence between D. paranaensis and D. mercatorum pararepleta based on morphometric analysis of their wings. The ellipse method was used to describe the placement of the longitudinal and transversal wing veins as well as the size of the wing and the shape of its outline. The heritability under laboratory and field conditions was also estimated from the parameters generated. Multivariate analysis showed that wing morphology possessed sufficient differences to discriminate between the two species with a successful classification rate of 95-98% for females and 82-87% for males. The results of the autoclassification were confirmed by a cross-validation test for females (92-96%). Most measurements possessed significant natural heritability (a mean of 0.48 for D. mercatorum and 0.88 for D. paranaensis), indicating that the variation observed was related to differences in genes acting additively. The principal difference between the two species was in the placement of the posterior transverse wing vein. However, the pattern of morphological variation in the wings of both species was similar, possibly because of shared restrictions in wing development pathways.  相似文献   

15.
We studied the relationship between wing stiffness and butterfly ecology and phylogeny. Nine species belonging to the tribe Theclini of the family Lycaenidae were selected and examined for the wing stiffness of dried specimens by a three‐point bending test. It was found in Japonica lutea that the wing stiffness was not affected by the humidity to which it had been exposed, but was strongly affected by wing size and sex. Comparisons of sexual differences in four species indicated that females of patrolling species had stiffer wings than conspecific males, but that males of territorial species had stiffer wings than conspecific females. Finally, the wing stiffness was compared among males of nine species that use different mate‐locating tactics, and the results revealed a tendency that males of territorial species have stiffer wings than males of patrolling species. These results, though including a few exceptional cases, are discussed from the perspective of ecological requirements and phylogenetic constraints on the species.  相似文献   

16.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

17.
Reaction norms of wing length, thorax length, and ovariole number were studied according to growth temperature in the circumtropical Drosophila ananassae, and compared to similar data from the cosmopolitan D. melanogaster. In the two species convex reaction norms were observed, but they were not parallel and sometimes exhibited intersections either at high (wing) or at low (thorax) temperature. On average, D. ananassae may be considered as a species with a bigger thorax but shorter wings than D. melanogaster. The shapes of reaction norms were analyzed and compared after quadratic polynomial adjustments. Significant differences were observed, in several cases between polynomial parameters, and in all cases between characteristic points that is, Maximum Value (MV) and Temperature of Maximum Value (TMV). The wing/thorax ratio may also be considered as a specific trait related to wing loading. Major differences were observed between the two species for the mean value and the shape of the response curves of this trait. The main observation of this work was however a shift of TMVs for wing and thorax length and ovariole number in D. ananassae toward higher temperatures. These variations in the reaction norms corresponded to a shift in the species thermal range, suggesting that temperature adaptation was accompanied by a modification of the shape of the response curves.  相似文献   

18.
Summary Pieris butterflies use a novel behavioral posture for thermoregulation called reflectance basking, in which the wings are used as solar reflectors to reflect radiation to the body. As a means of exploring the thermoregulatory significance of wing melanization patterns, I examine the relation of basking posture and wing color pattern to body temperature. A mathematical model of the reflectance process predicts certain combinations of dorsal wing melanization pattern and basking posture that maximize body temperature. Laboratory experiments and field observations show that this model correctly predicts qualitative differences in the relation of body temperature to basking posture based on differences in the extent of dorsal melanization on the wing margins, both between species and between sexes within species of Pieris. This is the first demonstration in insects that coloration of the entire wing surface can affect thermoregulation. Model and experimental results suggest that, in certain wing regions, increased melanization can reduce body temperature in Pieris; this effect of melanization is exactly the opposite of that found in other Pierid butterflies that use their wings as solar absorbers. These results are discussed in terms of the evolution of wing melanization pattern and thermoregulatory behavior in butterflies.  相似文献   

19.
Summary Do birds that migrate over longer distances have more pointed wings than more sedentary birds? Within several bird genera, species differ considerably in their migration distances. This makes it possible to study the extent to which different taxa show similar morphological solutions to common selection pressures. I selected 14 species, two from each of seven passerine genera, to maximize within-genus differences in migration distance. Wing lengths and the lengths of eight primary feathers around the wing tip were measured to assess wing length and shape. Primary lengths were transformed to take into account the allometric relationship between the length of each feather and wing length and then collapsed into summary measures of shape by principal component analysis. I used the method of independent contrasts to address the effects of phylogeny. Wing length showed no relationship with migration distance. There was a correlation between migration distance and wing shape. It is concluded that long-distance migration has resulted in convergent morphological evolution of long distal and short proximal primaries, resulting in wing tips close to the leading edge of the wing.  相似文献   

20.
Competition is one of the most cited mechanisms to explain secondary sexual dimorphism in animals. Nonetheless, it has been proposed that sexual dimorphism in bat wings is also a result of adaptive pressures to compensate additional weight caused by fetus or pup carrying during the reproductive period of females. The main objective of this study is to verify the existence of sexual dimorphism in Sturnira lilium wings. We employed geometric morphometrics techniques using anatomical landmarks superimposition to obtain size (Centroid Size) and shape variables of wings, which were reduced by Linear Discriminant Analysis (LDA). We also employed classical morphometrics using wing length measurements to compare efficiency between these two morphometric approaches and make comparisons using wing area measurements. LDA indicated significant differences between wing shapes of males and females, with 91% (stepwise classification) and 80% (leave-one-out cross validation) of correct classification. However, the size variable obtained did not contribute to such classifications. We have observed larger areas in female wings, but we found no differences in wing length measurements and no allometric effects in wing length, shape and area measurements. Interestingly, our study has provided evidences of morphological differences where classical morphometrics have failed. LDA and area measurements analyses revealed that females have a different area distribution in distinct portions of the wing, with wider dactylopatagia and plagiopatagia, and wingtips more triangular than males. No differences in body length or relative wing length were observed between the sexes, but pregnant females have more body weight than non-pregnant females and males. Our findings suggest that sexual dimorphism in the wing shape of S. lilium is probably related to the increase in flight efficiency of females during reproductive period. It decreases wing loading in specific portions of the wing and reduces energy cost to maintain a faster and maneuverable flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号