首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional petit-suisse cheese: measure of the prebiotic effect   总被引:1,自引:0,他引:1  
Cardarelli HR  Saad SM  Gibson GR  Vulevic J 《Anaerobe》2007,13(5-6):200-207
Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin, oligofructose, honey) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using sterile, stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli, were achieved with addition of prebiotics to a probiotic cheese (made using starter+probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use.  相似文献   

2.
Utilization of different types of dietary fibres by potential probiotics   总被引:1,自引:0,他引:1  
A better understanding of the functionality of probiotics and dietary fibres with prebiotic activity is required for the development of improved synbiotic preparations. In this study, utilization of β(2-1) fructans, galactooligosaccharides, and plant polysaccharides as prebiotics by lactobacilli, bifidobacteria, and pediococci was investigated. Our results demonstrate that prebiotics with linear chains consisting of galactose units are better utilized by probiotics than are those consisting of glucose and fructose units, and the ability of probiotic bacteria to utilize prebiotics is strain-specific. In addition, rye fructooligosaccharides represent a prebiotic fibre that supports the growth of a wide range of probiotic cultures and as such has a potential to improve the successfulness of probiotic treatments. This study also demonstrates dietary fibre utilization by pediococci and provides data supporting the possible use of pediococci as a probiotic in synbiotic combinations.  相似文献   

3.
Synbiotics are recognized means of modulating gut microbiota composition and activities. However, whether synbiotics are superior to prebiotics and probiotics alone in moderating the gut microbiota towards a purportedly healthy composition has not been determined. Eight selected synbiotics (short-chain fructooligosaccharides or fructooligosaccharides, each combined with one of four probiotics, Lactobacillus fermentum ME-3, Lactobacillus plantarum WCFS1, Lactobacillus paracasei 8700:2 or Bifidobacterium longum 46) were added to 24-h pH-controlled anaerobic faecal batch cultures. The prebiotic and probiotic components were also tested alone to determine their respective role within the synbiotic for modulation of the faecal microbiota. Effects upon major groups of the microbiota were evaluated using FISH. Rifampicin variant probiotic strains were used to assess probiotic levels. Synbiotic and prebiotics increased bifidobacteria and the Eubacterium rectale-Clostridium coccoides group. Lower levels of Escherichia coli were retrieved with these combinations after 5 and 10 h of fermentation. Probiotics alone had little effect upon the groups, however. Multivariate analysis revealed that the effect of synbiotics differed from the prebiotics as higher levels of Lactobacillus-Enterococcus were observed when the probiotic was stimulated by the prebiotic component. Here, the synbiotic approach was more effective than prebiotic or probiotic alone to modulate the gut microbiota.  相似文献   

4.
Probiotics and prebiotics have been demonstrated to positively modulate the intestinal microflora and could promote host health. Although some studies have been performed on combinations of probiotics and prebiotics, constituting synbiotics, results on the synergistic effects tend to be discordant in the published works. The first aim of our study was to screen some lactic acid bacteria on the basis of probiotic characteristics (resistance to intestinal conditions, inhibition of pathogenic strains). Bifidobacterium was the most resistant genus whereas Lactobacillus farciminis was strongly inhibited. The inhibitory effect on pathogen growth was strain dependent but lactobacilli were the most effective, especially L. farciminis. The second aim of the work was to select glucooligosaccharides for their ability to support the growth of the probiotics tested. We demonstrated the selective fermentability of oligodextran and oligoalternan by probiotic bacteria, especially the bifidobacteria, for shorter degrees of polymerisation and absence of metabolism by pathogenic bacteria. Thus, the observed characteristics confer potential prebiotic properties on these glucooligosaccharides, to be further confirmed in vivo, and suggest some possible applications in synbiotic combinations with the selected probiotics. Furthermore, the distinctive patterns of the different genera suggest a combination of lactobacilli and bifidobacteria with complementary probiotic effects in addition to the prebiotic ones. These associations should be further evaluated for their synbiotic effects through in vitro and in vivo models.  相似文献   

5.
In view of the increasing interest in the bioecological and nutritional control of diseases, use of probiotics alone or in combination with prebiotics (synbiotics) appears as a therapeutic option for various diseases. In this study, an attempt was made to explore the protective potential of Lactobacillus acidophilus as a probiotic, inulin as a prebiotic and both L. acidophilus and inulin as synbiotic against Salmonella -induced liver damage in a murine model. The probiotic, prebiotic and synbiotic supplementation resulted in decreased bacterial translocation in the liver of mice challenged with Salmonella typhimurium and decreased levels of serum aminotransferases, suggesting their protective role against Salmonella infection. Mice supplemented with these preparations before Salmonella challenge also revealed decreased levels of lipid peroxidation, increased levels of superoxide dismutase and glutathione, along with reduced levels of nitric oxide. Thus, bacteriological and biochemical alterations correlated well with the histological evidence. Protection afforded by supplementation with the probiotic alone was found to be more effective. None of the observations was suggestive of the synergistic effect in the synbiotic-supplemented animals. Thus, it is indicated that the probiotic and the prebiotic used in the present study may act by different mechanisms involved in affording protection against Salmonella -induced liver damage.  相似文献   

6.
The aim of this study was to enhance the viability of probiotic strains Pediococcus pentosaceus KID7, Lactobacillus plantarum KII2, Lactobacillus fermentum KLAB6 and Lactobacillus helveticus KII13 in gastrointestinal transit, freeze-drying condition and during storage time by microencapsulation using a combination of alginate, fenugreek gum and locust bean gum. The microcapsules were prepared using various ratio of alginate to fenugreek gum to locust bean gum and tested for its dissolution in colonic fluid. The combination that efficiently dissolved in colonic fluid was selected for co-encapsulation of the probiotic strains and prebiotics to produce synbiotic microcapsules. Further, we observed that the bacteria encapsulated with alginate-fenugreek gum-locust bean gum (AFL) matrix tolerated gastrointestinal condition efficiently compared to non-encapsulated bacteria. The encapsulated bacterial cells retained higher viability than non-encapsulated cells during freeze-drying condition and subsequent storage for 3 months at 4°C. These results show the utility of AFL matrix in microencapsulation of probiotics for use in food industry.  相似文献   

7.

Background

The microflora composition of the oral cavity affects oral health. Some strains of commensal bacteria confer probiotic benefits to the host. Lactobacillus is one of the main probiotic genera that has been used to treat oral infections. The objective of this study was to select lactobacilli with a spectrum of probiotic properties and investigate their potential roles in oral health.

Results

An oral isolate characterized as Lactobacillus brevis BBE-Y52 exhibited antimicrobial activities against Streptococcus mutans, a bacterial species that causes dental caries and tooth decay, and secreted antimicrobial compounds such as hydrogen peroxide and lactic acid. Compared to other bacteria, L. brevis BBE-Y52 was a weak acid producer. Further studies showed that this strain had the capacity to adhere to oral epithelial cells. Co-incubation of L. brevis BBE-Y52 with S. mutans ATCC 25175 increased the IL-10-to-IL-12p70 ratio in peripheral blood mononuclear cells, which indicated that L. brevis BBE-Y52 could alleviate inflammation and might confer benefits to host health by modulating the immune system.

Conclusions

L. brevis BBE-Y52 exhibited a spectrum of probiotic properties, which may facilitate its applications in oral care products.
  相似文献   

8.

In the last years, demand for functional products containing both prebiotics and probiotics (known as synbiotic) has increased, which stimulated their incorporation into other food matrices than milk-based ones. Synbiotics improve gut functionality as well as respond to the increasing demand of consumers who have become aware of the health benefits of a proper diet. The most important criterion for preserving consumer acceptance in such products is maintaining the minimum viability and activity of probiotics from the beginning of production to the end of shelf-life. For their viability, fixation and multiplying within the host, several solutions have been proposed including the fortification with prebiotics and microencapsulation of prebiotics along with probiotics. The challenge of microencapsulation is to protect the probiotic cells in foods that are not usually considered their vehicle, such as fruit matrices. It is generally known that different prebiotics may exert different degrees of protection on the entrapped bacteria cells. For food products, such as fruit beverages, few works exist that investigate the functionality of synbiotic microcapsules in protecting the survivability of probiotic cells during processing and storage. This article provides an overview of this novel trend based on a review of relevant literature. The article summarizes the synbiotic concept, challenges for synbiotic formulation in fruit beverages, and future perspectives.

  相似文献   

9.
Bovine lactoferrin (bLf) is a natural iron-binding protein and it has been suggested to be a prebiotic agent, but this finding remains inconclusive. This study explores the prebiotic potential of bLf in 14 probiotics. Initially, bLf (1–32 mg/mL) treatment showed occasional and slight prebiotic activity in several probiotics only during the late experimental period (48, 78 h) at 37 °C. We subsequently supposed that bLf exerts stronger prebiotic effects when probiotic growth has been temperately retarded. Therefore, we incubated the probiotics at different temperatures, namely 37 °C, 28 °C, room temperature (approximately 22–24 °C), and 22 °C, to retard or inhibit their growth. As expected, bLf showed more favorable prebiotic activity in several probiotics when their growth was partially retarded at room temperature. Furthermore, at 22 °C, the growth of Bifidobacterium breve, Lactobacillus coryniformis, L. delbrueckii, L. acidophilus, B. angulatum, B. catenulatum, and L. paraplantarum were completely blocked. Notably, these probiotics started regrowing in the presence of bLf (1–32 mg/mL) in a significant and dose-dependent manner. Accordingly, bLf significantly increased the growth of Pediococcus pentosaceus, L. rhamnosus, and L. paracasei (BCRC 17483; a locally isolated strain) when their growth was retarded by incubation at 22 °C. In conclusion, bLf showed inconsistent prebiotic activity in the 14 probiotics at 37 °C, but revealed strong prebiotic activity in 10 probiotic strains at 22 °C. Therefore, this study enables determining additional roles of Lf in probiotic strains, which can facilitate developing novel combinational approaches by simultaneously using Lf and specific probiotics.  相似文献   

10.
Selection and optimization procedure of synbiotic for cholesterol removal   总被引:2,自引:0,他引:2  
Zhang F  Hang X  Fan X  Li G  Yang H 《Anaerobe》2007,13(5-6):185-192
A selection and optimization procedure for the synbiotic combination of probiotic and prebiotics was established to optimize its cholesterol removal in vitro. In light of fermentability, prebiotics utilization by probiotics was highly variable and interspecies differences existed. Based on the results of fermentability, L. plantarum LS12, Ls31, LP529 and L. ruminis La3 could be the better candidates for symbiotic research. The bile tolerance of all the tested strains could be improved by the strain-specific prebiotics comparing to the control carbon source (glucose). The strain LS12 was finally selected to form the symbiotic according to its better ability to ferment prebiotics and bile tolerance, while the five prebiotics (FOS, stachyose, GOS, IMO and mannitol) were selected to make their synbiotic combination because of their better enhancement of bile tolerance and growth support to LS12. The synbiotic combination for cholesterol removal was optimized by use of response surface methodology. The first-order model showed that the selected prebiotics mannitol and GOS were significant factors. Then through the second-order polynomial regression model, the optimum conditions of the two factors for cholesterol removal by the synbiotic were suggested.  相似文献   

11.
One strategy for enhancing the establishment of probiotic bacteria in the human intestinal tract is via the parallel administration of a prebiotic, which is referred to as a synbiotic. Here we present a novel method that allows a rational selection of putative probiotic strains to be used in synbiotic applications: in vivo selection (IVS). This method consists of isolating candidate probiotic strains from fecal samples following enrichment with the respective prebiotic. To test the potential of IVS, we isolated bifidobacteria from human subjects who consumed increasing doses of galactooligosaccharides (GOS) for 9 weeks. A retrospective analysis of the fecal microbiota of one subject revealed an 8-fold enrichment in Bifidobacterium adolescentis strain IVS-1 during GOS administration. The functionality of GOS to support the establishment of IVS-1 in the gastrointestinal tract was then evaluated in rats administered the bacterial strain alone, the prebiotic alone, or the synbiotic combination. Strain-specific quantitative real-time PCR showed that the addition of GOS increased B. adolescentis IVS-1 abundance in the distal intestine by nearly 2 logs compared to rats receiving only the probiotic. Illumina 16S rRNA sequencing not only confirmed the increased establishment of IVS-1 in the intestine but also revealed that the strain was able to outcompete the resident Bifidobacterium population when provided with GOS. In conclusion, this study demonstrated that IVS can be used to successfully formulate a synergistic synbiotic that can substantially enhance the establishment and competitiveness of a putative probiotic strain in the gastrointestinal tract.  相似文献   

12.
The aim of this study was to screen potential probiotic lactic acid bacteria from Chinese spontaneously fermented non-dairy foods by evaluating their probiotic and safety properties. All lactic acid bacteria (LAB) strains were identified by 16S rRNA gene sequencing. The in vitro probiotic tests included survival under low pH and bile salts, cell surface hydrophobicity, auto-aggregation, co-aggregation, antibacterial activity, and adherence ability to cells. The safety properties were evaluated based on hemolytic activity and antibiotic resistance profile. The salt tolerance, growth in litmus milk, and acidification ability were examined on selected potential probiotic LAB strains to investigate their potential use in food fermentation. A total of 122 strains were isolated and identified at the species level by 16S rRNA gene sequencing and included 62 Lactobacillus plantarum, 40 Weissella cibaria, 12 Lactobacillus brevis, 6 Weissella confusa, and 2 Lactobacillus sakei strains. One W. cibaria and nine L. plantarum isolates were selected based on their tolerance to low pH and bile salts. The hydrophobicity, auto-aggregation, co-aggregation, and antagonistic activities of these isolates varied greatly. All of the 10 selected strains showed multiple antibiotic resistance phenotypes and no hemolytic activity. The highest adhesion capacity to SW480 cells was observed with L. plantarum SK1. The isolates L. plantarum SK1, CB9, and CB10 were the most similar strains to Lactobacillus rhamnosus GG and selected for their high salt tolerance and acidifying activity. The results revealed strain-specific probiotic properties were and potential probiotics that can be used in the food industry.  相似文献   

13.
The effect of a prebiotic (fructooligosaccharides) or a synbiotic components (prebiotic and probiotic) on the viability, proteolysis and antioxidant properties of probiotic and synbiotic yogurt during 28?days of storage at 4?°C has been investigated. Yogurt starters in conjunction with either probiotic bacteria Lactobacillus plantarum CFR 2194, Lactobacillus fermentum CFR 2192 and/or fructooligosaccharides (FOS) were used for yogurt preparation. Titratable acidity and pH of all yogurt samples followed a similar pattern of increase or decrease during storage. Proteolysis in synbiotic yogurts was found to be significantly (P?<?0.05) higher in comparison with that of control. The addition of prebiotics had no effect (P?=?0.17888) on the viability of yogurt starters during cold storage. No observable changes in the viability of probiotic cultures in probiotic groups. However, supplementation of FOS affected the growth significantly (P?<?0.05) in promoting the growth of L. plantarum and L. fermentum. Antioxidant activities, the index of nutritional value of yogurt, were monitored. Results showed that the DPPH-radical-scavenging activity (85?%) in synbiotic yogurt containing L. plantarum and FOS was significantly higher (P?<?0.05) in comparison with that of control yogurt (72?%). Total phenolics and the ferric reducing power were highest in synbiotic yogurts in comparison with that of other test samples during the entire period of storage. Addition of selected probiotics with FOS thus resulted in an improved functionality of yogurt.  相似文献   

14.
AIM: To identify novel prebiotics that could be used to maintain persistence of three representative probiotic strains in vivo. METHODS AND RESULTS: Test mice were treated with prebiotics soybean oligosaccharide (SOS), fructooligosaccharide (FOS) or inulin, followed by probiotics Lactobacillus acidophilus LAFTI L10 (L10), Bifidobacterium lactis LAFTI B94 (B94) or Lactobacillus casei L26 LAFTI (L26). Faecal samples were then collected and analysed using selective medium and PCR analysis to determine the presence of the probiotic strains. In contrast to the control groups, in mice fed prebiotics, the survival and retention time of the test probiotics was increased extensively. SOS and FOS prolonged the retention period of L10 from 24 to 30 h. Of the three prebiotics, FOS gave the best result with B94, prolonging the retention period from 3 to > or =10 days. Of the three prebiotics, inulin gave the best result for L26, prolonging the retention period from 2 to > or =6 days. CONCLUSIONS: The prebiotics SOS, FOS and inulin significantly enhance survival and prolong the retention period of L10, B94 and L26 in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results demonstrate the potential use of FOS, inulin and SOS as prebiotics in conjunction with the probiotic strains L10, B94 and L26 for new synbiotic products.  相似文献   

15.
Gut microbiome–host metabolic interactions affect human health and can be modified by probiotic and prebiotic supplementation. Here, we have assessed the effects of consumption of a combination of probiotics (Lactobacillus paracasei or L. rhamnosus) and two galactosyl‐oligosaccharide prebiotics on the symbiotic microbiome–mammalian supersystem using integrative metabolic profiling and modeling of multiple compartments in germ‐free mice inoculated with a model of human baby microbiota. We have shown specific impacts of two prebiotics on the microbial populations of HBM mice when co‐administered with two probiotics. We observed an increase in the populations of Bifidobacterium longum and B. breve, and a reduction in Clostridium perfringens, which were more marked when combining prebiotics with L. rhamnosus. In turn, these microbial effects were associated with modulation of a range of host metabolic pathways observed via changes in lipid profiles, gluconeogenesis, and amino‐acid and methylamine metabolism associated to fermentation of carbohydrates by different bacterial strains. These results provide evidence for the potential use of prebiotics for beneficially modifying the gut microbial balance as well as host energy and lipid homeostasis.  相似文献   

16.
This study aimed at determining the influence of prebiotic, probiotic, and synbiotic supplemented diets on Oreochromis niloticus. Fish with initial body weight (25.8 ± 1.2) g and length range from (13.5 ± 1.5) cm were collected and randomized to four dietary treatments for 60 days. Furthermore, fish were divided into three groups in triplicate; A0 control (-ve), A1 control (+ve) infected with V.anguillarium, and a third non-treated group. Moreover, the third group further separated into two groups, A and B. Group (A) was treated with prebiotic, probiotic, and symbiotic (A2, A3, and A4), while group (B) was infected with V.anguillarium then treated with prebiotic, probiotic and symbiotic (A5, A6, and A7). The results revealed that all treatments supplemented with synbiotics represented highly significant increase (p ≤ 0.05) in (SGR), BWG percentage, relative growth rate (%), lysozyme activity, IMG, SOD, and CAT. At the same time, they exhibited a significant decrease in MAD and FCR. Besides, fish that feed dietary supplementation with prebiotics, probiotics, and synbiotics revealed a significant increase in RBCs, WBCs, and Hb. In contrast, they showed a significant decrease in ALT, AST, albumin, total protein, globulin, creatinine, and urea compared with control. Additionally, high survival rates were recorded in groups that received a diet supplemented with probiotics, followed by prebiotics and synbiotics.  相似文献   

17.
There is increasing interest in the use of plant probiotics as environmental-friendly and healthy biofertilizers. The study aimed at selecting for novel probiotic candidates of soybean (Glycine max). The bacteriome and mycobiome of soybean sprouts and seeds were analyzed by Illumina-based sequencing. Seeds contained more diverse bacteria than those in sprouts. The seeds contained similar fungal diversity with sprouts. Total 15 bacterial OTUs and 4 fungal OTUs were detected in seeds and sprouts simultaneously, suggesting that the sprouts contained bacterial and fungal taxa transmitted from seeds. The Halothiobacillus was the most dominant bacterial genus observed and coexisted in seeds and sprouts. The OTUs belonged to Ascomycota were the most dominant fungal taxa observed in seeds and sprouts. Halothiobacillus was firstly identified as endophytic probiotics of soybean. The results suggested that sprouts might contain diverse plant probiotics of mature plants and Illumina-based sequencing can be used to screen for probiotic candidates.  相似文献   

18.
A number of investigations, mainly using in vitro and animal models, have demonstrated a wide range of possible mechanisms, by which probiotics may play a role in colorectal cancer (CRC) prevention. In this context, the most well studied probiotics are certain strains from the genera of lactobacilli and bifidobacteria. The reported anti-CRC mechanisms of probiotics encompass intraluminal, systemic, and direct effects on intestinal mucosa. Intraluminal effects detailed in this review include competitive exclusion of pathogenic intestinal flora, alteration of intestinal microflora enzyme activity, reduction of carcinogenic secondary bile acids, binding of carcinogens and mutagens, and increasing short chain fatty acids production. Reduction of DNA damage and suppression of aberrant crypt foci formation have been well demonstrated as direct anti-CRC effects of probiotics on intestinal mucosa. Existing evidence clearly support a multifaceted immunomodulatory role of probiotics in CRC, particularly its ability to modulate intestinal inflammation, a well known risk factor for CRC. The effectiveness of probiotics in CRC prevention is dependent on the strain of the microorganism, while viability may not be a prerequisite for certain probiotic anticancer mechanisms, as indicated by several studies. Emerging data suggest synbiotic as a more effective approach than either prebiotics or probiotics alone. More in vivo especially human studies are warranted to further elucidate and confirm the potential role of probiotics (viable and non-viable), prebiotics and synbiotics in CRC chemoprevention.  相似文献   

19.
Prebiotics and synbiotics: towards the next generation   总被引:9,自引:0,他引:9  
Recent research in the area of prebiotic oligosaccharides and synbiotic combinations with probiotics is leading towards a more targeted development of functional food ingredients. Improved molecular techniques for analysis of the gut microflora, new manufacturing biotechnologies, and increased understanding of the metabolism of oligosaccharides by probiotics are facilitating development. Such developments are leading us to the time when we will be able to rationally develop prebiotics and synbiotics for specific functional properties and health outcomes.  相似文献   

20.
Considerable variations among probiotics with respect to their health benefitting attributes fuel the research on bioprospecting of proficient probiotic strains from various ecological niches especially the poorly unexplored ones. In the current study, kalarei, an indigenous cheese-like fermented milk product, and other dairy-based sources like curd and raw milk were used for isolation of lactic acid bacteria (LAB). Among 34 LAB isolates, 7 that could withstand simulated gastrointestinal (GI) conditions were characterized for functional probiotic attributes, viz. adhesion ability, aggregation and coaggregation, extracellular enzyme producing capability, antibacterial activity against pathogens and antibiotic resistance. The isolate M-13 (from kalarei) which exhibited most of the desirable probiotic functional properties was identified as Lactobacillus plantarum based on 16S ribosomal DNA sequence analysis and designated as L. plantarum M-13. The sequence was submitted to GenBank (accession number KT592509). The study presents the first ever report of isolation of potential probiotic LAB, i.e. L. plantarum M-13 from indigenous food kalarei, and its application for development of potential probiotic fermented oat flour (PFOF). PFOF was analysed for parameters like viability of L. plantarum M-13, acidity and pH. Results show that PFOF serves as a good matrix for potential probiotic L. plantarum M-13 as it supported adequate growth of the organism (14.4 log cfu/ml after 72 h of fermentation). In addition, appreciable acid production by L. plantarum M-13 and consequential pH reduction indicates the vigorous and active metabolic status of the potential probiotic organism in the food matrix. Thus, study shows that fermented oat flour may possibly be developed as a potential probiotic carrier especially in view of the problems associated with dairy products as probiotic vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号