首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diagnostic significance of molecular markers was assessed for the most common somatic aberrations at the K-ras, TP53, CDKN2A, and MADH4 loci, as well as less common mutations of BRCA1, BRCA2, and CHEK2, arising in preinvasive stages of sporadic adenocarcinoma of the pancreas. The study was performed on paired primary pancreatic adenocarcinoma and normal pancreatic tissue specimens obtained from 37 Russian patients. Surgical adenocarcinoma specimens were subjected to manual microdissection. Mutations of K-ras codon 12 were found in 24 tumor specimens (0.65), but not in normal pancreatic tissue specimens. Mutations of BRCA1 (185delAG, 300T > G, 4153delA, 4158A > G, 5382insC), BRCA2 (695insT, 6174delT), and CHEK2 (1100delC) were not found. The informativeness of allelic losses did not differ significantly among the three tumor suppressor loci and was 60% for TP53 (GDB186817) and CDKN2A (D9S974 + D9S162) and 65.7% for MADH4 (D18S363 + D18S474) (t = 0.48). The CDKN2A locus had the highest LOH frequency of 0.95. For TP53 and MADH4 the LOH frequency was 0.62 and 0.70, respectively. In 80% of adenocarcinomas, at least one locus was characterized with LOH. The overall informativeness of the combined data on K-ras mutations and loss of heterozygosity at 9p, 17p, and 18q was 85.7%. Only 9% of the tumors were characterized with microsatellite instability.  相似文献   

2.

Background

TP53 gene mutations occur in more than 50% of human cancers and the vast majority of these mutations in human cancers are missense mutations, which broadly occur in DNA binding domain (DBD) (Amino acids 102–292) and mainly reside in six “hotspot” residues. TP53 G245C and R273H point mutations are two of the most frequent mutations in tumors and have been verified in several different cancers. In the previous study of the whole genome sequencing (WGS), we found some mutations of TP53 DBD in esophageal squamous cell carcinoma (ESCC) clinical samples. We focused on two high-frequent mutations TP53 p.G245C and TP53 p.R273H and investigated their oncogenic roles in ESCC cell lines, p53-defective cell lines H1299 and HCT116 p53?/?.

Results

MTS and colony formation assays showed that mutant TP53 G245C and R273H increased cell vitality and proliferation. Flow cytometry results revealed inhibition of ultraviolet radiation (UV)- and ionizing radiation (IR)- induced apoptosis and disruption of TP53-mediated cell cycle arrest after UV, IR and Nocodazole treatment. Transwell assays indicated that mutant TP53 G245C and R273H enhanced cell migration and invasion abilities. Moreover, western blot revealed that they were able to suppress the expression of TP53 downstream genes in the process of apoptosis and cell cycle arrest induced by UV, which suggests that these two mutations can influence apoptosis and growth arrest might be due, at least in part, to down-regulate the expression of P21, GADD45α and PARP.

Conclusions

These results indicate that mutant TP53 G245C and R273H can lead to more aggressive phenotypes and enhance cancer cell malignancy, which further uncover TP53 function in carcinogenesis and might be useful in clinical diagnosis and therapy of TP53 mutant cancers.
  相似文献   

3.

Background

The Li-Fraumeni syndrome (LFS), an inherited rare cancer predisposition syndrome characterized by a variety of early-onset tumors, is caused by different highly penetrant germline mutations in the TP53 gene; each separate mutation has dissimilar functional and phenotypic effects, which partially clarifies the reported heterogeneity between LFS families. Increases in copy number variation (CNV) have been reported in TP53 mutated individuals, and are also postulated to contribute to LFS phenotypic variability. The Brazilian p.R337H TP53 mutation has particular functional and regulatory properties that differ from most other common LFS TP53 mutations, by conferring a strikingly milder phenotype.

Methods

We compared the CNV profiles of controls, and LFS individuals carrying either p.R337H or DNA binding domain (DBD) TP53 mutations by high resolution array-CGH.

Results

Although we did not find any significant difference in the frequency of CNVs between LFS patients and controls, our data indicated an increased proportion of rare CNVs per genome in patients carrying DBD mutations compared to both controls (p=0.0002***) and p.R337H (0.0156*) mutants.

Conclusions

The larger accumulation of rare CNVs in DBD mutants may contribute to the reported anticipation and severity of the syndrome; likewise the fact that p.R337H individuals do not present the same magnitude of rare CNV accumulation may also explain the maintenance of this mutation at relatively high frequency in some populations.
  相似文献   

4.
Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness for preventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activity of silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used: RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates, genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 and miR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutated cells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survival assay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion, despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role of silibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.  相似文献   

5.
Analysis of the carrier frequency of p.Arg408Trp, p.Arg261Gln, and p.Arg261X mutations in the PAH gene was carried out in different unrelated indigenous individuals representing 58 populations of Eurasia taking into account their linguistic identity and territorial location. Mutation p.Arg408Trp in the PAH gene was found in 14 studied populations with the highest average carrier frequency of 0.0127 in the Volga-Ural region and 0.0134 in the representatives of the Slavic language group. Mutation p.Arg261Gln in the PAH gene was detected only in two populations with average carrier frequency rate of 0.0012 in the Volga-Ural region. Mutation p.Arg261X in the PAH gene was identified in four North Caucasus populations with highest carrier frequency in Karachays—at 0.0526. All PAH gene mutations in populations of Eurasia were identified in the heterozygous state.  相似文献   

6.
TP53 mutations play a significant role in glioma tumorigenesis. When located in in the DNA binding domain, these mutations can perturb p53 protein conformation and its function, often culminating in altered downstream signaling. Here we describe prevalent pattern of TP53 point mutations in a cohort of 40 glioma patients and show their relevance to gliomagenesis. Point mutations in exon 5–9 of TP53 gene were detected by DNA sequencing. Possible influence of identified mutations at the function of p53 was studied computationally and correlated with the survival. Point mutations in TP53 were detected in 10 glioma samples (25%), out of which 70% were from high grade glioma. A total of 19 TP53 point mutations were identified, out of which 42% were found to be in the DNA binding region of p53. Computational analysis predicted 87.5% of these mutations to be “probably damaging”. In three patients with tumors possessing point mutations R273H, R248Q, Y163H and R175H and poor survival times, structural analysis revealed the nature of these mutations to be disruptive and associated with high risk for cancer progression. In high grade glioma, recurrent TP53 point mutations may be the key to tumor progression, thus, emphasizing their significance in gliomagenesis.  相似文献   

7.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Δ were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to γ-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to γ-radiation and UV light; mutations rad9Δ and rad24Δ were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

8.

Background

TP53 mutations in cancer cells often evoke cell invasiveness, whereas fibroblasts show invasiveness in the presence of intact TP53. AMAP1 (also called DDEF1 or ASAP1) is a downstream effector of ARF6 and is essential for the ARF6-driven cell-invasive phenotype. We found that AMAP1 levels are under the control of p53 (TP53 gene product) in epithelial cells but not in fibroblasts, and here addressed that molecular basis of the epithelial-specific function of p53 in suppressing invasiveness via targeting AMAP1.

Methods

Using MDA-MB-231 cells expressing wild-type and p53 mutants, we identified miRNAs in which their expression is controlled by normal-p53. Among them, we identified miRNAs that target AMAP1 mRNA, and analyzed their expression levels and epigenetic statuses in epithelial cells and nonepithelial cells.

Results

We found that normal-p53 suppresses AMAP1 mRNA in cancer cells and normal epithelial cells, and that more than 30 miRNAs are induced by normal-p53. Among them, miR-96 and miR-182 were found to target the 3′-untranslated region of AMAP1 mRNA. Fibroblasts did not express these miRNAs at detectable levels. The ENCODE dataset demonstrated that the promoter region of the miR-183-96-182 cistron is enriched with H3K27 acetylation in epithelial cells, whereas this locus is enriched with H3K27 trimethylation in fibroblasts and other non-epithelial cells. miRNAs, such as miR-423, which are under the control of p53 but not associated with AMAP1 mRNA, demonstrated similar histone modifications at their gene loci in epithelial cells and fibroblasts, and were expressed in these cells.

Conclusion

Histone modifications of certain miRNA loci, such as the miR-183-96-182 cistron, are different between epithelial cells and non-epithelial cells. Such epithelial-specific miRNA regulation appears to provide the molecular basis for the epithelial-specific function of p53 in suppressing ARF6-driven invasiveness.
  相似文献   

9.

Background

Ovarian cancer is the leading cause of death worldwide among gynecologic malignancies. The recent approval of inhibitors of poly (ADP-ribose) polymerase (iPARP) in the treatment of ovarian cancer in the presence of a BRCA1/2 mutation has sparked the analysis of women with such diagnosis, which can further benefit from the detection of carriers in the family. Germline sequence and large rearrangements for BRCA1/2 were tested in 398 consecutive epithelial ovarian cancer (EOC) patients.The aim of this study was to identify the frequency and spectrum of germline BRCA1/2 pathogenic alterations in a cohort of patients with ovarian serous carcinoma, with a view to adequately selecting patients for prevention through family counseling and correlating this frequency with platinum sensitivity as a guidance to identify patients eligible for iPARP in our population.

Results

A total of 96 patients carried a pathogenic germline mutation, accounting for an overall 24.1% mutation incidence. Among mutation carriers, BRCA1 showed 62.5% incidence, BRCA2 rendered 36.5%, and one patient exhibited a mutation in both genes. Three pathogenic mutations were recurrent mutations detected five, three, and four times and represented 12.5% of the mutated samples. Worth highlighting, a 50% mutation incidence was detected when breast and ovarian cancer coexisted in the same patient. Novel mutations amounted to 9.4% of the total mutations, as compared to 4.7% in breast cancer. Forty out of 60 BRCA1 mutations were beyond the ovarian cancer cluster region (OCCR), in stark contrast with 22 out of 36 BRCA2 mutations being inside the OCCR. Taken together, germline BRCA1/2 mutations in EOC patients showed a distinct mutational spectrum compared to our previously published data on breast cancer patients.

Conclusions

In sum, our study provides novel data on ovarian BRCA1/2 mutation prevalence worldwide, enhances adequate patient selection for family counseling and prevention, and sheds light on the benefits of iPARP treatment.
  相似文献   

10.
Jayson GC et al. remarked in Lancet that nearly 100% of mucinous ovarian cancer cases have Kras mutation as well as a high frequency of Her2 amplification. Using the Abbott PathVysion Her2 DNA Probe Kit and Kras mutant-enriched PCR Kits (FemtoPath®), 21 samples of primary ovarian mucinous cystadenocarcinomas from Taiwanese patients were examined to determine the status of Her2 amplification and Kras mutations. Our results showed the Her2 amplification rates were 33.33%, while the Kras mutation rates were 61.90%. We present here our results in order to enlighten the readership that the ~100% Kras mutant frequency and the high Her2 amplification rate reported by Jayson et al. may be too exaggerated to be applicable into all populations. Additionally, we report another 2 novel Kras mutations (A11V, V14I).  相似文献   

11.
Glioblastoma is the most common malignant brain tumour, generated by bulk of malignant cancer stem cells, which express various stem cell factors like CD133, BMI1 and nestin. There are several studies which show the importance of CD133 in cancer, but the function and interaction with other major oncogenes and tumour suppressor genes is still not understood. This study aimed to analyse the expression of CD133 mRNA and its correlations with BMI1 protein expression and TP53 mutations in newly diagnosed glioblastoma patients and its role in prognosis. Overexpression of CD133 mRNA and BMI1 protein was found in 47.6 and 76.2% patients respectively and TP53 mutations was seen in 57.1% of patients in our study. There was no correlation among TP53 mutations and expressions of CD133 and BMI1. We found that high level of BMI1 expression was favourable for the patient survival (P= 0.0075) and high CD133 mRNA expression was unfavourable for the patient survival (P= 0.0226). CD133 mRNA and BMI1 protein expression could independently predict the glioblastoma patient survival in multivariate analysis. In conclusion, the overexpression of these stem cell markers is a common event in glioblastoma progression and could be used as potential prognostic markers.  相似文献   

12.
13.
Cereal opaque-kernel mutants are ideal genetic materials for studying the mechanism of starch biosynthesis and amyloplast development. Here we isolated and identified two allelic floury endosperm 8 (flo8) mutants of rice, named flo8-1 and flo8-2. In the flo8 mutant, the starch content was decreased and the normal physicochemical features of starch were altered. Map-based cloning and subsequent DNA sequencing analysis revealed a single nucleotide substitution and an 8-bp insertion occurred in UDP-glucose pyrophosphorylase 1 (Ugp1) gene in flo8-1 and flo8-2, respectively. Complementation of the flo8-1 mutant restored normal seed appearance by expressing full length coding sequence of Ugp1. RT-qPCR analysis revealed that Ugp1 was ubiquitously expressed. Mutation caused the decreased UGPase activity and affected the expression of most of genes associated with starch biosynthesis. Meanwhile, western blot and enzyme activity analyses showed the comparability of protein levels and enzyme activity of most tested starch biosynthesis related genes. Our results demonstrate that Ugp1 plays an important role for starch biosynthesis in rice endosperm.  相似文献   

14.
Mutations in the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 gene (CHCHD10), involved in mitochondrial function, have recently been reported as a causative gene of amyotrophic lateral sclerosis (ALS). The aim of this study was to obtain the mutation prevalence of CHCHD10 and the phenotypes with mutations in Chinese ALS patients. A cohort of 499 ALS patients including 487 sporadic ALS (SALS) and 12 familial ALS (FALS), from the Department of Neurology, West China Hospital of Sichuan University, were screened for mutations of all exons of the CHCHD10 gene by Sanger sequencing. Novel candidate mutations or variants were confirmed by polymerase chain reaction-restriction fragment length polymorphism in 466 healthy individuals. All patients identified with mutations of CHCHD10 gene were screened for mutations of the common ALS causative genes including C9orf72, SOD1, TARDBP, FUS, PFN1, and SQSTM1. Three heterozygous variants, including two missense mutations (c.275A?>?G (p.Y92C) and c.306G?>?C (p.Q102H)) and a synonymous change c.306G?>?A (p.Q102Q), were found in exon 3 of CHCHD10 in three alive SALS individuals (with the longest disease duration of 8.6 years), all of which were not detected in healthy controls. No mutation in CHCHD10 was identified in FALS patients. No mutation was found in the aforementioned common ALS causative genes in the patients who carried CHCHD10 mutations. The mutation frequency of CHCHD10 (0.4 %, 2/487) in a Chinese SALS population suggests CHCHD10 gene mutation appears to be an uncommon cause of ALS in Chinese populations. CHCHD10 mutations are associated with a slow progression and long disease duration.  相似文献   

15.

Background

The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI.

Methods

Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish’s osteogenesis imperfecta mutation database.

Results

The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G?>?A (p.Gly821Ser) in four unrelated patients and one, c.2005G?>?A (p.Ala669Thr), in two unrelated patients.

Conclusion

Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.
  相似文献   

16.
Familial Mediterranean fever (FMF) is a hereditary autoinflammatory disorder caused by mutations in the MEFV gene. The disease is especially common among Armenian, Turkish, Jewish and Middle East Arab populations. To identify the frequency and the spectrum of common MEFV mutations in different Iranian populations, we investigated a cohort of 208 unselected asymptomatic individuals and 743 FMF patients. Nine hundred and fifty-one samples were analysed for the presence of 12 MEFV mutations by PCR and reverse-hybridization (FMF StripAssay, ViennaLab, Vienna, Austria). Confirmatory dideoxy sequencing of all MEFV gene exons was performed for 39 patients. Fifty-seven (27.4%) healthy individual carried mutant MEFV alleles. Three hundred and ninety-one (52.6%) FMF patients were found positive for either one (172/743; 23.1%), two or three MEFV mutations. Using dideoxy sequencing, three novel variants, A66P, R202W and H300Q, could be identified. Our analysis revealed an allele frequency and carrier rate of 15.6 and 27.4%, respectively, among healthy Iranians. Still moderate compared to neighbouring Armenia, but higher than in Turkey or Iraq, these data suggest that FMF is remarkably common among Iranian populations. E148Q was most frequent in the group of healthy individuals, whereas M694V was the most common mutation among FMF patients, thereby corroborating previous studies on MEFV mutational spectra in the Middle East. Accordingly, MEFV mutations are frequent in healthy Iranian individuals across different ethnic groups. Based on this finding, the awareness for FMF and the implementation of augmented carrier screening programmes considering the multiethnic nature of the Iranian population should be promoted.  相似文献   

17.
A study of Russian cystic fibrosis (CF) patient DNA was conducted to assess the incidence frequency of 19 mutations, namely CFTRdele2,3(21kb), F508del, I507del, 1677delTA, 2143delT, 2184insA, 394delTT, 3821delT, L138ins, 604insA, 3944delGT, G542X, W1282X, N1303K, R334W, and 3849 + 10kbC > T, S1196X, 621 + 1g > t, and E92K of the CFTR gene. We also sought to determine the estimated CF frequency in Russian Federation. In addition, we determined the total information content of the approach for 19 common mutations registration in the CFTR gene, 84.6%, and the allelic frequencies of the examined mutations: three mutations were observed with a frequency exceeding 5% (F508del, 53.98%, E92K, 6.47%, CFTRdele2,3(21kb), 5.35%); other mutations were observed with frequencies ranging from 0.13 to 3.0%. The CF population carrier frequency was 1 in 38 subjects, while the predicted CF frequency was 1 in 5776 newborns.  相似文献   

18.

Background

Loss of function COQ2 mutations results in primary CoQ10 deficiency. Recently, recessive mutations of the COQ2 gene have been identified in two unrelated Japanese families with multiple system atrophy (MSA). It has also been proposed that specific heterozygous variants in the COQ2 gene may confer susceptibility to sporadic MSA. To assess the frequency of COQ2 variants in patients with MSA, we sequenced the entire coding region and investigated all exonic copy number variants of the COQ2 gene in 97 pathologically-confirmed and 58 clinically-diagnosed MSA patients from the United States.

Results

We did not find any homozygous or compound heterozygous pathogenic COQ2 mutations including deletion or multiplication within our series of MSA patients. In two patients, we identified two heterozygous COQ2 variants (p.S54W and c.403?+?10G?>?T) of unknown significance, which were not observed in 360 control subjects. We also identified one heterozygous carrier of a known loss of function p.S146N substitution in a severe MSA-C pathologically-confirmed patient.

Conclusions

The COQ2 p.S146N substitution has been previously reported as a pathogenic mutation in primary CoQ10 deficiency (including infantile multisystem disorder) in a recessive manner. This variant is the third primary CoQ10 deficiency mutation observed in an MSA case (p.R387X and p.R197H). Therefore it is possible that in the heterozygous state it may increase susceptibility to MSA. Further studies, including reassessing family history in patients of primary CoQ10 deficiency for the possible occurrence of MSA, are now warranted to resolve the role of COQ2 variation in MSA.
  相似文献   

19.
20.
Familial adenomatous polyposis (FAP) is a hereditary predisposition to formation of colon polyps that can progress to colorectal cancer (CRC). The severity of polyposis varies substantially within families bearing the same germline mutation in the adenomatous polyposis coli (APC) tumour suppressor gene. The progressive step-wise accumulation of genetic events in tumour suppressor genes and oncogenes leads to oncogenic transformation, with driver alterations in the tumour protein p53 (TP53) gene playing a key role in advanced stage CRC. We analysed groups of pigs carrying a truncating mutation in APC (APC1311/+; orthologous to human APC1309/+) to study the influence of TP53 polymorphisms and expression on the frequency of polyp formation and polyp progression in early-stage FAP. Five generations of APC1311/+ pigs were examined by colonoscopy for polyposis severity and development. A total of 19 polymorphisms were found in 5′-flanking, coding, and 3′ untranslated regions of TP53. The distribution of TP53 genotypes did not differ between APC1311/+ pigs with low (LP) and high (HP) number of colon polyps. p53 mRNA expression was analysed in distally located normal mucosa samples of wild-type pigs, APC1311/+ LP and HP pigs, and also in distally located polyp samples histologically classified as low-grade (LG-IEN) and high-grade intraepithelial dysplastic (HG-IEN) from APC1311/+ pigs. p53 mRNA expression was found to be significantly elevated in HG-IEN compared to LG-IEN samples (p?= 0.012), suggesting a role for p53 in the early precancerous stages of polyp development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号