首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-6T, was isolated from beach soil on Jeju Island, South Korea. Strain 15J9-6T, grew at 10–30°C (optimum growth at 25°C) and pH 7–8 (optimum growth at pH 7) on R2A, NA, and TSA agar. Phylogenetically, the strain was closely related to members of the genus Spirosoma (92.3–90.1% 16S rRNA gene sequence similarities) and showed highest sequence similarity to Spirosoma panaciterrae DSM 21099T (92.3%). The G+C content of the genomic DNA of strain 15J9-6T was 45.7 mol%. The strain contained phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified phospholipid, and an unidentified lipid as the major polar lipids; menaquinone MK-7 as the predominant respiratory quinone and summed feature 3 (C16:1 ω6c/C16:1 ω7c; 30.1%), C16:1 ω5c (23.1%), iso C15:0 (13.3%), and C16:0 (8.4%) as the major fatty acids which supported the affiliation of strain 15J9-6T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J9-6T from recognized Spirosoma species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 15J9-6T represents a novel species of the genus Spirosoma, for which the name Spirosoma daeguensis sp. nov. is proposed. The type strain is 15J9-6T (=KCTC 52036T =JCM 31995T)  相似文献   

2.
A Gram stain-negative, yellowish green-pigmented, facultatively anaerobic, motile, curved rod-shaped bacterium designated as strain JJ016T was isolated from an artificial lake in South Korea, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ016T indicated that the isolate belonged to the family Rhodocyclaceae and exhibited 95.0% identity to Uliginosibacterium gangwonense 5YN10-9T. The major cellular fatty acids of the novel strain were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), C16:0, C14:0, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G+C content of strain JJ016T was 61.9 mol%. The major respiratory quinone and major polar lipid of strain JJ016T were ubiquinone-8 and phosphatidylethanolamine, respectively. Based on the morphological and physiological properties and the biochemical evidence presented, we concluded that strain JJ016T represents a novel species of a new genus in the family Rhodocyclaceae, for which the name Viridibacterium curvum gen. nov., sp. nov. is proposed. The type strain is JJ016T (=KACC 16899T =JCM 18715T).  相似文献   

3.
A Gram-stain-negative and orangish yellow-pigmented bacterial strain, designated PR1014KT, was isolated from an automobile evaporator core collected in Korea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PR1014KT was related with the members of the genus Spirosoma (94.7–90.2%) and closely related with Spirosoma lacussanchae CPCC 100624T (94.7%), Spirosoma knui 15J8-12T (94.3%), and Spirosoma soli MIMBbqt12T (93.3%). The strain grew at 15–40°C (optimum, 25°C), pH 6.5–7.0 (optimum, 6.5) and 0–1% (w/v) NaCl (optimum, 0%). The predominant fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, iso-C15:0, C16:1 ω5c, and iso-C17:0 3-OH. The major menaquinone was MK-7. The polar lipid profile of the strain indicated that the presence of one phosphatidylethanolamine, one unidentified aminolipid, two unidentified aminophospholipids, and three unidentified lipids. The DNA G+C content of the strain was 47.4 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain PR1014KT represents a novel species in the genus Spirosoma, for which the name Spirosoma metallicus sp. nov. (=KACC 17940T =NBRC 110792T) is proposed.  相似文献   

4.
Two Gram-stain negative halophilic strains, designated as LM2T and LM4, were isolated from Lake LongmuCo on Tibetan Plateau. These two strains were aerobic, catalaseand oxidase-positive, nonmotile and rod-shaped organisms. Phylogenetic analysis based on 16S rRNA gene sequences indicated that LM2T and LM4 belong to the genus Roseovarius, with Roseovarius tolerans EL-172T (97.3% and 97.4% 16S rRNA gene sequence similarity, respectively) and Roseovarius azorensis SSW084T (95.5% and 95.6% 16S rRNA gene sequence similarity, respectively) as their closest neighbors. Q-10 was the sole respiratory quinone of these two strains. The major fatty acids were C18:1ω7c/C18:1ω6c, C16:0, C19:0 cyclo ω8c, and 11-methyl C18:1ω7c. The polar lipids included phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phospholipid of unknown structure containing glucosamine, and unidentified aminolipid. The DNA G + C content was between 64.2 and 64.5 mol%. DNA-DNA hybridization showed 96.7% relatedness between LM2T and LM4, 24.9% relatedness between LM2T and R. tolerans EL-172T, and 36.3% relatedness between LM4 and R. tolerans EL-172T. Based on phylogenetic analysis, DNA-DNA hybridization, a range of physiological and biochemical characteristics, LM2T and LM4 belong to the same species and were clearly distinguished from the type strains of the genus Roseovarius. It was evident that LM2T and LM4 could be classified as a novel species of the genus Roseovarius, for which the name Roseovarius tibetensis sp. nov. is proposed. The type strain is LM2T (= CGMCC 1.16230T = KCTC 62028T).  相似文献   

5.
A Gram-negative, facultative anaerobic, rod-shaped, motile by means of a polar flagellum, greenish-yellow-pigmented bacterial strain (designated strain JJ3220T) was isolated from an artificial lake in South Korea and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ3220T indicated that the isolate belongs to the family Rhodocyclaceae, and that it exhibits 96.4% similarity to Uliginosibacterium paludis KBP-13T. The major cellular fatty acids of the novel strain were C14:0, C16:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). Strain JJ3220T had flexirubin-type pigments. The DNA G+C content of the strain was 62.8%. The major respiratory quinone and major polar lipid of strain JJ3220T were ubiquinone-8 and phosphatidylethanolamine, respectively. Based on the morphological and physiological properties and biochemical evidence presented, it can be concluded that strain JJ3220T represents a novel species of the genus Uliginosibacterium. The type strain Uliginosibacterium flavum is JJ3220T (=KACC 17644T =JCM 19465T).  相似文献   

6.
Gram-staining-negative, uniflagellated, rod-shaped, designated as DCY110T, was isolated from sludge located in Gangwon province, Republic of Korea. The phylogenetic tree of 16S rRNA gene sequence showed that the strain DCY110T belonged to the genus Rhodoferax with a close similarity to Rhodoferax saidenbachensis DSM 22694T (97.7%), Rhodoferax antarcticus DSM 24876T (97.5%), Rhodoferax ferrireducens DSM 15236T (97.3%), and Rhodoferax fermentans JCM 7819T (96.7%). The predominant isoprenoid quinine was ubiquinone (Q-8). DNA G + C content was 62.8 mol%. The major polar lipids were phosphatidylethanolamine and two unidentified phospholipids. The major fatty acids (> 10%) were C12:0, C16:0, summed feature 3 (which comprised C16:1 ω7c and/or C16:1 ω6c). The DNA-DNA relatedness values between the strain DCY110T and the closely related relatives used in this study were lower than 70%. Based on the following polyphasic analysis, the strain DCY110T is considered as a novel species of the genus Rhodoferax, for which the name Rhodoferax koreense sp. nov. is proposed. The type strain is DCY-110T (= KCTC 52288T = JCM 31441T).  相似文献   

7.
A novel Gram-negative and red-pinkish bacterium designated DG5BT was isolated from a dry soil. Cells were rods that were catalase- and oxidase-positive, and non-motile. The strain was found to grow at temperatures from 10 to 30°C (optimum 25°C) and pH 6.0–8.0, (optimum pH 7) on R2A broth. 16S rRNA gene sequence (1,452 bp) analysis of this strain identified it as a member of the genus Hymenobacter that belongs to the class Cytophagia. The highest gene sequence similarities were with Hymenobacter arizonensis OR362-8T (98.3%), Hymenobacter humi DG31AT (97.6%), and Hymenobacter glaciei VUG-A130T (96.6%). Strain DG5BT exhibited <70% DNA-DNA relatedness with H. arizonensis (34.7 ± 7.0%; reciprocally, 29.7 ± 1.2%) and H. humi (39.4 ± 4.3%; reciprocally, 39.5 ± 3.3%) as a different genomic species, and its genomic DNA G+C content was 59.8%. Strain DG5BT had the following chemotaxonomic characteristics: the major fatty acids are iso-C15:0, anteiso-C15:0, C16:1ω5c, and summed feature 3 (C16:1ω7c / C16:1ω6c); polar lipid profile contained phosphatidylethanolamine (PE), unknown aminophospholipid (APL), unknown glycolipids (GL), unknown phospholipids (PL), and unknown polar lipids (L); the major quinone is MK-7. The absorbance peak of pigment is at 481.0 nm. Strain DG5BT showed low-level resistance to gamma-ray irradiation. Phenotypic, chemotaxonomic, and genotypic properties indicated that isolate DG5BT represents a novel species within the genus Hymenobacter for which the name Hymenobacter sedentarius sp. nov. is proposed. The type strain is DG5BT (=KCTC 32524T =JCM 19636T).  相似文献   

8.
Three Gram-negative, strictly aerobic, chemolithoheterotrophic bacterial strains, designated UCM-30, UCM-33, and UCM-39T, were isolated in South Korea. Based on their 16S rRNA gene sequences, the three isolated strains were found to be similar to Limnobacter thiooxidans CS-K2T (97.41–97.68%), Limnobacter litoralis KP1-19T (95.55–95.76%), and various genera belonging to the class Betaproteobacteria (90.34–93.34%). DNA-DNA hybridization showed 79.3–83.9% similarity between the genomic DNA of UCM-39T, UCM-30, and UCM-33, while the sequence similarity between UCM-39T and L. thiooxidans KACC 13837T or L. litoralis LMG 24869T was 23.7% and 18.6%, respectively. The DNA G+C content of UCM 39T was 59.7 mol%, the major ubiquinone was Q-8, and the optimal oxidation rate was observed at 10 mM thiosulfate. The major fatty acids (≥ 10%) were summed features 3 (C16:1 ω7c and/or C16:1 ω6c) and 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The major polar lipids (diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol) were found in all members of genus Limnobacter. Based on phenotypic, physiological, and phylogenetic analyses, the UCM-39T strain was found to be significantly distinct to represent a novel species affiliated to the genus Limnobacter. We propose to name it Limnobacter humi sp. nov. with the type strain UCM-39T (=KACC 18574T =NBRC 111650T).  相似文献   

9.
A polyphasic taxonomic study was carried out on strains PB105T and PB108 isolated from a grass soil in Korea. The cells of the strains were Gram-stain negative, non-spore-forming, non-motile, and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of these strains with Bacteroidetes, which showed high pairwise sequence similarities with Hymenobacter algoricola VUG-A23aT (99.2%), Hymenobacter fastidiosus VUG-A124aT (97.4%), and Hymenobacter daecheongensis Dae14T (96.9%). The phylogenetic analysis based on 16S rRNA gene sequences showed that the strains formed a clear phylogenetic lineage with the genus Hymenobacter. The major fatty acids were identified as C15:0 iso, C15:0 anteiso, C16:1 ω5c, C15:0 iso 3-OH, C17:0 iso 3-OH, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t), and summed feature 4 (C17:1 anteiso B and/or C17:1 iso I). The major cellular polar lipids were identified as phosphatidylethanolamine, an unidentified aminolipid, and two unidentified lipids. The respiratory quinone was identified as MK-7 and the genomic DNA G+C content was determined to be 64.5 mol% for strain PB105T and 64.1 mol% for strain PB108. DNA–DNA hybridization value of type strain PB105T with H. algoricola VUG-A23aT was 32.3% (reciprocal 39.2). Based on the combined genotypic and phenotypic data, we propose that strains PB105T and PB108 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter daejeonensis sp. nov. is proposed. The type strain is PB105T (=?KCTC 52579T?=?JCM 31885T).  相似文献   

10.
A Gram-negative, motile, aerobic and rod-shaped bacterial strain designated 119BY6-57T was isolated from spongin. The taxonomic position of the novel isolate was confirmed using the polyphasic approach. Strain 119BY6-57T grew well at 25–30°C on marine agar. On the basis of 16S rRNA gene sequence similarity, strain 119BY6-57T belongs to the family Xanthomonadaceae and is related to Lysobacter aestuarii S2-CT (99.8% sequence similarity), L. maris KMU-14T (97.5%), and L. daejeonensis GH1-9T (97.3%). Lower sequence similarities (97.0%) were found with all of the other recognized members of the genus Lysobacter. The G + C content of the genomic DNA was 69.9 mol%. The major respiratory quinone was Q-8 and the major fatty acids were C16:0 iso, C15:0 iso, summed feature 9 (comprising C17:1 iso ω9c and/or C16:0 10-methyl), summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), and C11:0 iso 3-OH. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified phospholipids, and an unidentified polar lipid. DNADNA relatedness values between strain 119BY6-57T and its closest phylogenetically neighbors were below 48.0 ± 2.1%. Based on genotypic and phenotypic characteristics, it is concluded that strain 119BY6-57T is a new member within the genus Lysobacter, for which the name Lysobacter spongiae sp. nov. is proposed. The type strain is 119BY6-57T (= KACC 19276T = LMG 30077T).  相似文献   

11.
A non-motile, pink-pigmented bacterial strain designated IMCC25679T, was isolated from freshwater Lake Chungju of Korea. Phylogenetic trees based on 16S rRNA gene sequences showed that the strain IMCC25679T formed a lineage within the genus Pedobacter. The strain IMCC25679T was closely related to Pedobacter daechungensis Dae 13T (96.4% sequence similarity), Pedobacter rivuli HME8457T (95.3%) and Pedobacter lentus DS-40T (94.3%). The major fatty acids of IMCC- 25679T were iso-C15:0, iso-C16:0 and summed feature 3 (comprising C16:1ω6c and/or C16:1ω7c). The major respiratory quinone was MK-7. The major polar lipids were phosphatidylethanolamine (PE), an unidentified sphingolipid (SL), an unidentified aminolipid (AL) and three unidentified polar lipids (PL). The DNA G + C content of IMCC25679T was 32.2 mol%. Based on the evidence presented in this study, the strain IMCC25679T represents a novel species within the genus Pedobacter, with the proposed name Pedobacter aquicola, sp. nov. The type strain is IMCC25679T (= KACC 19486T = NBRC113131T).  相似文献   

12.
A novel bacterium designated S-42T was isolated from stream bank soil. Cells were found to be aerobic, Gram staining-negative, oxidase-positive, catalase-negative, non-motile, non-spore-forming, rod-shaped, and yellow-pigmented. The strain can grow at 15–35 °C, pH 6.0–10.0, and at 0.5% (w/v) NaCl concentration. Urea was hydrolysed. Flexirubin-type pigments were absent. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain S-42T formed a lineage within the family Flavobacteriaceae of the phylum Bacteroidetes that is distinct from various species of the genus Flavobacterium, including Flavobacterium maotaiense T9T (97.6% sequence similarity), Flavobacterium hibernum ATCC 51468T (97.4%), and Flavobacterium granuli Kw05T (97.1%). The 16S rRNA gene sequences identity between strain S-42T and other members of the genus Flavobacterium were < 97.0%. Strain S-42T contains MK-6 as sole respiratory quinone. The major polar lipids were identified as phosphatidylethanolamine and an unidentified aminolipid. The major cellular fatty acids were identified as iso-C15:0, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), C16:0, anteiso-C15:0, iso-C17:0 3-OH, iso-C15:0 3-OH, and iso-C15:1 G. The DNA G?+?C content of the strain was 35.8 mol%. The polyphasic characterization indicated that strain S-42T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ureilyticum sp. nov. is proposed. The type strain is S-42T (=?KEMB 9005-537T?=?KACC 19115T?=?NBRC 112683T).  相似文献   

13.
A novel, Gram-staining negative, yellow pigmented bacterial strain, designated 15J11-2T, was isolated from soil sample on Jeju Island, Republic of Korea. The strain was subjected to a taxonomic study using a polyphasic approach. The strain was able to grow at temperature range from 10°C to 30°C, pH 7–8, and in presence of 0–1% (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain 15J11-2T belongs to the genus Spirosoma and levels of 16S rRNA gene sequence similarity ranged from 91.5% to 89.8%. The genomic DNA G + C content of strain 15J11-2T was 46.0 mol%. The isolate contained phosphatidylethanolamine and an unidentified aminophospholipid as the main polar lipids, menaquinone MK-7 as the predominant respiratory quinone, and summed feature 3 (C16:1ω6c/C16:1ω7c; 39.4%), C16:1ω5c (27.1%), and C16:0 (13.0%) as the major fatty acids, which supported the affiliation of strain 15J11-2T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J11-2T from recognized Spirosoma species. On the basis of its phenotypic properties, genotypic distinctiveness, chemotaxonomic features, strain 15J11-2T represents a novel species of the genus Spirosoma, for which the name Spirosoma flavus sp. nov. is proposed. The type strain is 15J11-2T (= KCTC 52026T = JCM 31998T).  相似文献   

14.
A novel aerobic bacterium, designated strain LAM9153T, was isolated from a saline soil sample collected from Lingxian County, Shandong Province, China. Cells of strain LAM9153T were observed to be Gram-stain negative, non-motile, non-spore-forming and rod-shaped. The new isolate grew optimally at 30–35 °C, pH 7.0 and 0.5% of NaCl concentration (w/v). According to the phylogenetic analysis based on the 16S rRNA gene sequence, strain LAM9153T shares high similarity with Chitinophaga terrae Gsoil 238T (96.9%) and Chitinophaga niabensis JS 13-10T (95.9%), forming a subcluster with C. terrae Gsoil 238T, Chitinophaga cymbidii R156-2T, C. niabensis JS 13-10T and Chitinophaga soli Gsoil 219T in the phylogenetic tree. The major cellular fatty acids (> 10%) were identified as iso-C15:0, iso-C17:0 3-OH and summed features 3 (C16:1 ω6c and/or C16:1 ω7c). The predominant respiratory quinone was identified as menaquinone MK-7. The polar lipids consisted of phosphatidylethanolamine, aminophospholipid, three unidentified aminolipids and five unidentified lipids. The genomic DNA G+C content was determined to be 53.2 ± 1.6 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, strain LAM9153T is concluded to represent a novel species of the genus Chitinophaga, for which the name Chitinophaga salinisoli sp. nov. is proposed. The type strain is LAM9153T (= ACCC 19960T = JCM 30847T).  相似文献   

15.
A novel Gram-negative, motile, and ovoid-shaped strain, LHWP3T, which belonged to the family Planctomycetaceae in the phylum Planctomycetes, was isolated from a dead ark clam Scapharca broughtonii collected during a mass mortality event on the south coast of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the isolate was most closely related to the type strain of Rhodopirellula baltica, with a shared 16S rRNA gene sequence similarity of 94.8%. The isolate grew optimally at 30°C in 4–6% (w/v) NaCl, and at pH 7. The major isoprenoid quinone was menaquinone-6 (MK-6). The dominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and unidentified polar lipids. The predominant cellular fatty acids were C16:0, C18:1 ω9c, and C18:0. The genomic DNA G+C content of strain LHWP3T was 53.0 mol%. Based on polyphasic taxonomic analyses, strain LHWP3T should be classified as a novel species in the genus Rhodopirellula in the family Planctomycetaceae, for which the name Rhodopirellula rosea sp. nov. is proposed. The type strain is LHWP3T (=KACC 15560T =JCM 17759T).  相似文献   

16.
A Gram-stain-negative, non-motile, non-spore-forming, rodshaped, aerobic bacterial strain, designated S1-2-2-5T, was isolated from the Jeollabuk-do province, Republic of Korea, and was characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain S1-2-2-5T belonged to the family Cytophagaceae in phylum Bacteroidetes, and was most closely related to Hymenobacter terrae DG7AT (98.2%), Hymenobacter rubidus DG7BT (98.0%), Hymenobacter soli PB17T (97.7%), Hymenobacter daeguensis 16F3Y-2T (97.2%) and Hymenobacter saemangeumensis GSR0100T (97.0%). The G + C content of the genomic DNA of strain S1-2-2-5T was 59.4 mol%. The detection of menaquinone MK-7 as the predominant respiratory quinone, a fatty acid profile with summed feature 3 (C16:1ω7c/C16:1ω6c; 32.0%), C15:0 iso (19.0%), and C15:0 anteiso (15.0%) as the major components, and a polar lipid profile with phosphatidylethanolamine as the major component supported the affiliation of strain S1-2-2-5T to the genus Hymenobacter. The DNA-DNA relatedness between strain S1-2-2-5T and H. terrae KCTC 32554T, H. rubidus KCTC 32553T, H. soli KCTC 12607T, H. daeguensis KCTC 52537T, and H. saemangeumensis KACC 16452T were 49.5, 48.2, 34.1, 28.1, and 31.8% respectively, clearly showing that the isolate is not related to them at the species level. Strain S1-2-2-5T could be clearly differentiated from its closest neighbors on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain S1-2-2-5T represents a novel species of the genus Hymenobacter, for which the name Hymenobacter terrigena sp. nov. is proposed. The type strain is S1-2-2-5T (= KCTC 52737T = JCM 32195T).  相似文献   

17.
A Gram-stain negative, aerobic, non-motile, rod-shaped and yellow bacterium, designated TX0651T, was isolated from an automotive air-conditioning system. Phylogenetically, the strain groups with the members of the genus Flavisolibacter and exhibits high 16S rRNA gene sequence similarities with Flavisolibacter ginsenosidimutans Gsoil 636T (97.4%), Flavisolibacter ginsengiterrae Gsoil 492T (96.3%) and Flavisolibacter ginsengisoli Gsoil 643T (96.2%). DNA–DNA relatedness between TX0651T and F. ginsenosidimutans KCTC 22818T and F. ginsengiterrae KCTC 12656T were determined to be less than 40%. The low levels of DNA–DNA relatedness identifies the strain TX0651T as a novel species in the genus Flavisolibacter. The major cellular fatty acids were identified as iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), iso-C15:1 G and iso-C17:0 3-OH. The predominant respiratory quinone was identified as MK-7. The polar lipids were found to be comprised of phosphatidylethanolamine, unidentified amino-glycophospholipids, an unidentified aminophospholipid, an unidentified amino lipid and unidentified lipids. The DNA G+C content of the strain was determined to be 31.2 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain TX0651T should be classified in a novel species in the genus Flavisolibacter, for which the name Flavisolibacter carri sp. nov. (=?KACC 19014T?=?KCTC 52836T?=?NBRC 111784T) is proposed.  相似文献   

18.
A taxonomic study was conducted on BR7-21T, a bacterial strain isolated from the soil of a ginseng field in Baekdu Mountain. Comparative studies of the 16S rRNA gene sequence showed that the isolate was most closely related to Conexibacter woesei DSM 14684T, Solirubrobacter pauli ATCC BAA-492T, Patulibacter minatonensis JCM 12834T, with 93.8%, 92.4%, and 91.5% sequence similarity, respectively; each genus represented a family in the order Solirubrobacterales. Strain BR7-21T was Gram-reaction positive, non-spore forming, aerobic, non-motile, and short rod-shaped. It grew well on half-strength R2A medium. The G + C content of the genomic DNA was 73.9%. It contained meso-diaminopimelic acid in the cell wall and the major menaquinones were MK-7(H4) and MK-8(H4). The major fatty acids were summarized as (C16:1ω7c/iso-C15:0 2-OH), iso-C16:0, and C17:0 cyclo. On the basis of polyphasic evidence, it was proposed that strain BR7-21T should be placed in a new genus and species, for which the name Baekduia soli gen. nov., sp. nov. was proposed with the type strain BR7-21T (= KCTC 22257T = LMG 24797T). The family Baekduiaceae fam. nov. is proposed to encompass the genus Baekduia gen. nov.  相似文献   

19.
Strain 63MJ-2T was isolated from the feces of broad-winged katydid (Pseudorhynchus japonicus) collected in Korea. The 16S rRNA gene sequence of this strain showed the highest sequence similarity with that of Siphonobacter aquaeclarae P2T (96.1%) and had low similarities (below 86.3%) with those of other members of family ‘Flexibacteraceae’. The strain 63MJ-2T is a strictly aerobic, Gram-stain-negative, non-motile, rod-shaped bacterium. The strain grew at 4–35°C (optimum, 25–30°C), pH of 5.0–9.0 (optimum, 6.0–7.0), and 0–2.0% (optimum, 1.0–2.0) (w/v) NaCl. The DNA G+C content of strain 63MJ-2T was 43.5 mol%. The major fatty acids were C16:1ω5c (42.5%), iso-C17:0 3-OH (18.7%), and summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c, 18.0%). The major menaquinone was MK-7 and polar lipids were phosphatidylethanolamine, six unknown aminolipids, and five unknown lipids. Based on the evidence from our polyphasic taxonomic study, we conclude that strain 63MJ-2T should be classified as a novel species of the genus Siphonobacter, and propose the name Siphonobacter intestinalis sp. nov. The type strain is 63MJ-2T (=KACC 18663T =NBRC 111883T).  相似文献   

20.
A pale yellow bacterial strain, designated JJ-A5T, was isolated form an agricultural soil from Jeju Island in Republic of Korea. Cells of the strain were Gram-stain-negative, motile, flagellated and rod-shaped. The strain grew at 15–30°C, pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Growth occurred on R2A, but not on Luria-Bertani agar, nutrient agar, trypticase soy agar and MacConkey agar. The strain utilized alachlor as a sole carbon source for growth. The strain JJ-A5T showed 16S rRNA gene sequence similarities lower than 95.4% with members of the family Sphingomonadaceae. Phylogenetic analysis showed that the strain belongs to the family Sphingomonadaceae and strain JJ-A5T was distinctly separated from established genera of this family. The strain contained Q-10 as dominant ubiquinone and spermidine as major polyamine. The predominant cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), 11-methyl C18:1ω7c, C16:0 and C14:0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, and phosphatidylcholine. The DNA G + C content of the strain was 62.7 mol%. On the basis of the phenotypic, genomic and chemotaxonomic characteristics, strain JJ-A5T is considered to represent a novel genus and species within the family Sphingomonadaceae, for which the name Tardibacter chloracetimidivorans gen. nov., sp. nov. is proposed. The type strain of Tardibacter chloracetimidivorans is JJ-A5T (= KACC 19450T = NBRC 113160T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号