首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation and is a key mechanism regulating alveolarization in lungs of newborn rats. Hyperoxia exposure (>95% O2 days 4-14) arrests lung alveolarization and may do so through suppression of the VEGF signaling system. Lung tissue mRNA levels of HIF-2alpha and VEGF increased from days 4-14 in normoxic animals, but hyperoxia suppressed these increases. Levels of HIF-2alpha and VEGF mRNA were correlated in the air but not the O2-treated group, suggesting that the low levels of HIF-2alpha observed at high O2 concentrations are not stimulating VEGF expression. VEGF164 protein levels increased with developmental age, and with hyperoxia to day 9, but continuing hyperoxia decreased levels by day 12. VEGFR1 and VEGFR2 mRNA expression also increased in air-exposed animals, and these, too, were significantly decreased by hyperoxia by day 9 and day 12, respectively. Receptor protein levels did not increase with development; however, O2 did decrease protein to less than air values. Hyperoxic suppression of VEGF signaling from days 9-14 may be one mechanism by which alveolarization is arrested.  相似文献   

2.
3.
Abstract

The metastasis-associated gene 1 (MTA1) has previously been recognized as an oncogene, and abnormal MTA1 expression has been related to progression of numerous cancer types to the metastasis stage. However, the function of MTA1 in the regulation of pancreatic cancer progression and metastasis remains unclear. Western blot analysis was adopted to determine the expression of MTA1 in pancreatic cancer tissues and corresponding near normal tissues. Steady clone with MTA1-overexpression and MTA1-inhibitionweregenerated via lentivirus technology in BxPc-3 cells. Transwell assay was carried out for detecting the invasion of pancreatic cancer cells. The migration activity was assessed using the wound scratch assay. The effect of MTA1 in pancreatic cancer was evaluated in the mice xenografts. Western blot analysis was employed to determine the expression of hypoxia inducible factor-α (HIF-α) and vascular endothelial growth factor (VEGF) in vitro and in vivo. We observed that MTA1 overexpression enhanced migration and invasion ability of pancreatic cancer cells in vitro and increased HIF-α and VEGF protein levels in vitro and in vivo. MTA1 inhibition had the opposite effects. MTA1 protein level was positively related to HIF-α and VEGF protein levels. These results indicated that MTA1 potentially promoted pancreatic cancer metastasis via HIF-α/VEGF pathway. This research supplies a new molecular mechanism for MTA1 in the pancreatic cancer progression and metastasis. MTA1 may be an effective therapy target in pancreatic cancer.  相似文献   

4.
目的:研究TGF-beta1(转化生长因子-beta1)、HIF-1alpha(低氧诱导因子-1alpha)、VEGF(血管内皮生长因子)在胃癌组织及癌旁组织中 的表达及临床意义。方法:选取于我院就诊的160 例胃癌手术患者切除的组织,采用免疫组化技术检测手术切除的胃癌组织中的 TGF-beta 1、HIF-1alpha及VEGF的表达,分析其与患者临床病理参数的关系。结果:免疫组化结果显示:TGF-beta1、HIF-1alpha及VEGF 在胃 癌组织中的表达均高于癌旁组织,差异均有统计学意义(P<0.05);TGF-beta1、HIF-1alpha及VEGF 的表达均与肿瘤分期、淋巴结转移及 浸润深度有关(P<0.05);VEGF的表达分别与TGF-beta1、HIF-1alpgha的表达呈相关关系(P<0.05)。结论:TGF-beta1、HIF-1alpha及VEGF在胃 癌组织中的表达与胃癌的病理学特征有关,检测TGF-beta1、HIF-1alpha及VEGF的表达将有助于临床诊治胃癌患者。  相似文献   

5.
D Medici  BR Olsen 《PloS one》2012,7(8):e42913
Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1). VEGF is a known HIF-1 target gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1α siRNA. Over-expression of HIF-1α increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1α siRNA reduce proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be therapeutic targets for the treatment of hemangiomas.  相似文献   

6.
7.
8.
Hypoxia inducible factor-1alpha (HIF-1alpha) mRNA expression is significantly decreased under hypoxia in different cell lines exposed directly to hypoxia or treated with dimethyloxalylglycine which mimics hypoxic effects under normoxic conditions. However, the decreased expression of HIF-1alpha mRNA is accompanied by an increase of HIF-1alpha protein (pHIF-1alpha) level as well as by overexpression of known HIF-dependent genes (VEGF, Glut1, PFKFB-3 and PFKFB-4) under hypoxic conditions or with the use of dimethyloxalylglycine. Expression of HIF-1alpha mRNA also depends on iron because desferrioxamine and cobalt chloride produce similar to hypoxia effects on the levels of this mRNA. It was shown that HIF-1alpha mRNA expression did not change significantly in some cell lines (SKBR3, MDA-MB468 and BT549) under hypoxia. However, in these cell lines hypoxia decreases expression of HIF-2alpha mRNA, another member of HIF-alpha gene family, as a result of cell specific regulation of HIF-alpha genes under hypoxia. Moreover, hypoxia slightly induces expression of PFKFB-4 mRNA in SKBR3, MDA-MB468 and BT549 as compared to other cell lines where this effect of hypoxia was much stronger and adaptation to hypoxia is controlled by HIF-1alpha. Hypoxia slightly reduces expression of tumor suppressor VHL which targets HIF-1alpha for ubiquitination. Thus, our results clearly demonstrated down regulation of HIF-1alpha or HIF-2alpha in different cell lines by hypoxia.  相似文献   

9.
10.
(?)-Epigallocatechin gallate (EGCG), the major constituent of green tea, inhibits the growth of colorectal cancer cells by inhibiting the activation of various types of receptor tyrosine kinases (RTKs). The RTK vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis induces tumor angiogenesis in colorectal cancer. This study examined the effects of EGCG on the activity of the VEGF/VEGFR axis and the expression of hypoxia-inducible factor (HIF)-1α, which promotes angiogenesis by elevating VEGF levels, in human colorectal cancer cells. Total and phosphorylated (i.e., activated) form (p-VEGFR-2) of VEGFR-2 proteins were overexpressed in a series of human colorectal cancer cell lines. Within 3 h, EGCG caused a decrease in the expression of HIF-1α protein and VEGF, HIF-1α, insulin-like growth factor (IGF)-1, IGF-2, epidermal growth factor (EGF), and heregulin mRNAs in SW837 colorectal cancer cells, which express a constitutively activated VEGF/VEGFR axis. A decrease was also observed in the expression of VEGFR-2, p-VEGFR-2, p-IGF-1 receptor, p-ERK, and p-Akt proteins within 6 h after EGCG treatment. Drinking EGCG significantly inhibited the growth of SW837 xenografts in nude mice, and this was associated with the inhibition of the expression and activation of VEGFR-2. The consumption of EGCG also inhibited activation of ERK and Akt, both of which are downstream signaling molecules of the VEGF/VEGFR axis, and reduced the expression of VEGF mRNA in xenografts. These findings suggest that EGCG may exert, at least in part, growth-inhibitory effects on colorectal cancer cells by inhibiting the activation of the VEGF/VEGFR axis through suppressing the expression of HIF-1α and several major growth factors. EGCG may therefore be useful in the chemoprevention and/or treatment of colorectal cancer.  相似文献   

11.
Hypoxia inducible factor-1 alpha (HIF-1 alpha) is a key determinant of oxygen-dependent gene regulation in angiogenesis. HIF-1 alpha overexpression may be beneficial in cell therapy of hypoxia-induced pathophysiological processes, such as ischemic heart disease. To address this issue, human peripheral blood mononuclear cells (PBMNCs) were induced to differentiate into endothelial progenitor cells (EPCs), and then were transfected with either an HIF-1 alpha-expressing or a control vector and cultured under normoxia or hypoxia. Hypoxia-induced HIF-1 alpha mRNA and protein expression was increased after HIF-1 alpha transfection. This was accompanied by VEGF mRNA induction and increased VEGF secretion. Hypoxia-stimulated VEGF mRNA induction was significantly abrogated by HIF-1 alpha-specific siRNA. Functional studies showed that HIF-1 alpha overexpression further promoted hypoxia-induced EPC differentiation, proliferation and migration. The expressions of endothelial cell markers CD31, VEGFR2 (Flk-1) and eNOS as well as VEGF and NO secretions were also increased. Furthermore, in an in vivo model of hindlimb ischemia, HIF-1 alpha-transfected EPCs homed to the site of ischemia. A higher revascularization potential was also demonstrated by increased capillary density at the injury site. Our results revealed that endothelial progenitor cells ex vivo modification by hypoxia inducible factor-1 alpha gene transfection is feasible and may offer significant advantages in terms of EPC expansion and treatment efficacy.  相似文献   

12.
13.
14.
15.
目的检测宫颈鳞癌组织及正常宫颈组织中HIF-2α、VEGF基因与蛋白的表达情况,探讨其在子宫颈鳞癌的临床意义。方法随机选取64例子宫颈鳞癌组织和22例正常宫颈组织,收集年龄、FIGO分期和淋巴结转移等临床相关指标,采用实时荧光定量PCR法及免疫组织化学法(Elivision法)检测各组织中HIF-2α、VEGF的表达。结果实时荧光定量PCR分析结果表明HIF-2α、VEGF mRNA表达较正常宫颈组织显著增加,差异有统计学意义(P0.05),且二者mRNA水平呈正相关(r=0.778,P0.001)。免疫组织化学法结果表明HIF-2α、VEGF蛋白在宫颈组织中的阳性表达率分别为宫颈鳞癌组93.8%、正常宫颈组18.2%,两组比较差异有统计学意义,且HIF-2α与VEGF呈显著相关(r=0.514,P0.05)。HIF-2α、VEGF的mRNA表达均与年龄无关,但与FIGO分期、淋巴结转移关系密切(P0.05),FIGO分期高、有淋巴结转移的子宫颈癌组织HIF-2α、VEGFmRNA表达水平均相应对照组升高。结论与正常宫颈组织相比,HIF-2α、VEGF mRNA和蛋白在宫颈鳞癌中均呈高表达。  相似文献   

16.
Respiratory distress syndrome (RDS) secondary to preterm birth and surfactant deficiency is characterized by severe hypoxemia, lung injury, and impaired production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Since hypoxia-inducible factors (HIFs) mediate the effects of both NO and VEGF in part through regulation by prolyl-hydroxylase-containing domains (PHDs) in the presence of oxygen, we hypothesized that HIF-1alpha and -2alpha in the lung are decreased following severe RDS in preterm neonatal lambs. To test this hypothesis, fetal lambs were delivered at preterm gestation (115-day gestation, term = 145 days; n = 4) and mechanically ventilated for 4 h. Lambs developed respiratory failure characterized by severe hypoxemia despite treatment with mechanical ventilation with high inspired oxygen concentrations. Lung samples were compared with nonventilated control animals at preterm (115-day gestation; n = 3) and term gestation (142-day gestation; n = 3). We found that HIF-1alpha protein expression decreased (P < 0.05) and PHD-2 expression increased (P < 0.005) at birth in normal term animals before air breathing. Compared with age-matched controls, HIF-1alpha protein and HIF-2alpha protein expression decreased by 80% and 55%, respectively (P < 0.005 for each) in preterm lambs with RDS. Furthermore, VEGF mRNA was decreased by 40%, and PHD-2 protein expression doubled in RDS lambs. We conclude that pulmonary expression of HIF-1alpha, HIF-2alpha, and the downstream target of their regulation, VEGF mRNA, is impaired following RDS in neonatal lambs. We speculate that early disruption of HIF and VEGF expression after preterm birth and RDS may contribute to long-term abnormalities in lung growth, leading to bronchopulmonary dysplasia.  相似文献   

17.
Bone marrow-derived cells are recruited to sites of ischemia, where they promote tissue vascularization. This response is dependent upon the expression of vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1), which mediates cell migration in response to VEGF or placental growth factor (PLGF). In this study, we found that exposure of cultured mouse bone marrow-derived mesenchymal stromal cells (MSC) to hypoxia or an adenovirus encoding a constitutively active form of hypoxia-inducible factor 1 (HIF-1) induced VEGFR1 mRNA and protein expression and promoted ex vivo migration in response to VEGF or PLGF. MSC in which HIF-1 activity was inhibited by a dominant negative or RNA interference approach expressed markedly reduced levels of VEGFR1 and failed to migrate or activate AKT in response to VEGF or PLGF. Thus, loss-of-function and gain-of-function approaches demonstrated that HIF-1 activity is necessary and sufficient for basal and hypoxia-induced VEGFR1 expression in bone marrow-derived MSC.  相似文献   

18.
19.
20.
A recent study of breast cancer patients with and without BRCA1 gene mutations found significantly lower levels of VEGF in serum from patients with BRCA1 mutations (Tarnowski, B., Chudecka-Glaz, A., Gorski, B., and Rzepka-Gorska, I. (2004) Breast Cancer Res. Treat. 88, 287-288). Here, we describe a possible mechanistic explanation for this correlation. Because hypoxia in tumors stimulates VEGF expression and secretion we hypothesized that altered BRCA1 protein levels in breast tumors could affect hypoxia-stimulated VEGF promoter activity. This possibility was tested in cells transfected with various combinations of expression plasmids for BRCA1, BRCA1 specific inhibitory RNAs (BRCA1-siRNAs), HIF-1alpha, and a VEGF promoter-reporter and then incubated in normoxia (21%, O2) or hypoxia (0.1%, O2). As predicted, increased BRCA1 levels enhanced both hypoxia-stimulated VEGF promoter activity and the amounts of VEGF mRNA, as determined by semiquantitative RT-PCR and quantitative real time PCR. Using the ChIP assay, we discovered that BRCA1 could be recruited to the endogenous human VEGF promoter along with HIF-1alpha following hypoxia. An interaction between BRCA1 and HIF-1alpha was found in human breast cancer cells. We also found that hypoxia-stimulated VEGF promoter activity and secretion was reduced in cells containing reduced amounts of endogenous BRCA1 protein (obtained by transfecting with BRCA1 siRNAs). A mechanistic explanation for these effects is provided by our finding a reduced half-life and reduced accumulation of HIF-1alpha in hypoxic cells transfected with BRCA1-siRNAs and that proteasome inhibitors blocked these effects of BRCA1-siRNAs. Thus, our results suggest that normal amounts of BRCA1 function in hypoxia to regulate HIF-1alpha stability, probably by interacting with HIF-1alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号