首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity—throughout the different stages of the feeding process with methanol and acetate—was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.  相似文献   

2.
The ability of micromycetes Trichoderma viride and Aspergillus terreus to decompose the cellulosecontaining substrates was studied. Office paper and cardboard, as well as a paper mixture, were found to be the most hydrolyzable. The cellulolytic activity of T. viride was 2–3 times higher than that of A. terreus; the highest values of 0.80 and 0.73 U/mL were obtained from office paper and the mixture of different types of paper, respectively. The micromycete cultivation conditions (composition of culture medium, sucrose cosubstrate addition, seeding technique) and the conditions of the fungus biomass treatment for its subsequent bioconversion into biogas by anaerobic microbial communities were optimized. It was shown that pretreatment improves the efficiency of biogas production from lignocellulosic materials when inoculated with microbial community of cattle manure. After pretreatment of the Jerusalem artichoke phytomass (stems and leaves) and its subsequent bioconversion into biogas by methanogenic community, the biogas yield was increased by1.5 times.  相似文献   

3.

Background

Although interactions between microorganisms involved in biogas production are largely uncharted, it is commonly accepted that methanogenic Archaea are essential for the process. Methanogens thrive in various environments, but the most extensively studied communities come from biogas plants. In this study, we employed a metagenomic analysis of deeply sequenced methanogenic communities, which allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways.

Results

A comprehensive metagenomic approach was used to compare seven environmental communities, originating from an agricultural biogas plant, cattle-associated samples, a lowland bog, sewage sludge from a wastewater treatment plant and sediments from an ancient gold mine. In addition to the native consortia, two laboratory communities cultivated on maize silage as the sole substrate were also analyzed. Results showed that all anaerobic communities harbored genes of all known methanogenesis pathways, but their abundance varied greatly between environments and that genes were encoded by different methanogens. Identification of microorganisms directly involved in different stages of methane production revealed that hydrogenotrophic methanogens, such as Methanoculleus, Methanobacterium, Methanobrevibacter, Methanocorpusculum or Methanoregula, predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant. Furthermore, in many environments, the methylotrophic pathway carried out by representatives of Methanomassiliicoccales, such as Candidatus Methanomethylophilus and Candidatus Methanoplasma, seemed to play an important role in methane production. In contrast, in stable laboratory reactors substrate versatile Methanosarcina predominated.

Conclusions

The metagenomic approach presented in this study allowed for deep exploration and comparison of nine environments in which methane production occurs. Different abundance of methanogenesis-related functions was observed and the functions were analyzed in the phylogenetic context in order to identify microbes directly involved in methane production. In addition, a comparison of two metagenomic analytical tools, MG-RAST and MetAnnotate, revealed that combination of both allows for a precise characterization of methanogenic communities.
  相似文献   

4.
High-throughput sequencing of the 16S rRNA gene fragments was used to determine the phylogenetic diversity of prokaryotes, including human pathogens, in the liquid phase of the sludge of a biogas reactor processing oil-containing and municipal waste. A unique microbial community was found to develop in the sludge, which comprised the microorganisms of municipal wastewater (bacteria of human feces) and specific groups of aerobic and anaerobic microorganisms, which possibly arrived with oil-containing water. In the 16S rRNA gene library, the sequences of representatives of Firmicutes prevailed (54.9%), which belonged to anaerobic bacteria of the genera Gelria (26.6%), Syntrophomonas (6.0%), Lutispora (2.0%), and uncultured Clostridia (group MBA03, 11.1%). The Proteobacteria sequences (20.7%) belonged mostly to the metabolically diverse members of the genus Pseudomonas (13.8%). The phylum Bacteroidetes (7%) was represented by uncultured bacteria (VadinBC27 wastewater-sludge group), while members of the phylum Cloacimonetes were mainly syntrophic bacteria Candidatus Cloacamonas (7.5%). The sequences of bacteria commonly occurring in oilfields (Clostridia, Anaerolinea, Bacteroidetes, sulfate-reducing Deltaproteobacteria, members of the family Syntrophaceae, and of the genera Thauera, Pseudomonas, Dechloromonas, and Petrimonas) were revealed. No sequences of bacteria known to be pathogenic to humans were found. The cultured microorganisms were aerobic organotrophic and anaerobic fermenting, denitrifying, and methanogenic prokaryotes. Fermenting and methanogenic enrichments grew on a broad range of organic substrates (sucrose, glycerol, starch), producing volatile fatty acids (acetate, n-butyrate, and propionate), gases (Н2, СО2, and CH4), and decreasing pH of the medium from 7.0 to 4.5–5.0. The possible application of the biogas reactor sludge as a source of fermenting and methanogenic anaerobic prokaryotes, as well as of aerobic hydrocarbonoxidizing bacteria for oilfield introduction and for production of new preparations for enhanced oil recovery and for bioremediation of oil contamination is discussed.  相似文献   

5.
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.  相似文献   

6.
The selection of microbes by enrichment on plant biomass has been proposed as an efficient way to develop new strategies for lignocellulose saccharification. Here, we report an in-depth analysis of soil-derived microbial consortia that were trained to degrade once-used wheat straw (WS1-M), switchgrass (SG-M) and corn stover (CS-M) under aerobic and mesophilic conditions. Molecular fingerprintings, bacterial 16S ribosomal RNA (rRNA) gene amplicon sequencing and metagenomic analyses showed that the three microbial consortia were taxonomically distinct. Based on the taxonomic affiliation of protein-encoding sequences, members of the Bacteroidetes (e.g. Chryseobacterium, Weeksella, Flavobacterium and Sphingobacterium) were preferentially selected on WS1-M, whereas SG-M and CS-M favoured members of the Proteobacteria (e.g. Caulobacter, Brevundimonas, Stenotrophomonas and Xanthomonas). The highest degradation rates of lignin (~59 %) were observed with SG-M, whereas CS-M showed a high consumption of cellulose and hemicellulose. Analyses of the carbohydrate-active enzymes in the three microbial consortia showed the dominance of glycosyl hydrolases (e.g. of families GH3, GH43, GH13, GH10, GH29, GH28, GH16, GH4 and GH92). In addition, proteins of families AA6, AA10 and AA2 were detected. Analysis of secreted protein fractions (metasecretome) for each selected microbial consortium mainly showed the presence of enzymes able to degrade arabinan, arabinoxylan, xylan, β-glucan, galactomannan and rhamnogalacturonan. Notably, these metasecretomes contain enzymes that enable us to produce oligosaccharides directly from wheat straw, sugarcane bagasse and willow. Thus, the underlying microbial consortia constitute valuable resources for the production of enzyme cocktails for the efficient saccharification of plant biomass.  相似文献   

7.

Background

Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing.

Results

Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH4 + when HRT was 17 days but were reduced to 550 mg/L NH4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus, whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter. The acidogenic reactors were lower in diversity (34–101 observed OTU0.97, 1.3–2.5 Shannon) compared to the methanogenic reactors (472–513 observed OTU0.97, 5.1–5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors.

Conclusions

The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
  相似文献   

8.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

9.
Aquaculture ponds represent ecologically relevant environments to study the community composition and diversity of methanogenic assemblages, as well as their interactions with cultivated species and chemical indicators. In this study, aquaculture ponds with crab (Eriocheir sinensis), oriental river prawn (Macrobrachium nipponense), perch (Micropterus salmonides) and Wuchang fish (Parabramis pekinensis) were sampled, and Illumina high-throughput sequencing was used to investigate the methanogenic communities. The results revealed that the abundant methanogenic orders in surface sediment were Methanomicrobiales, Methanosarcinales and Methanocellales. The relative abundance of Methanocellales was higher in crab and prawn ponds as compared to other ponds. Methanogenic 16S rRNA gene abundance and beta diversity of the community was affected by the cultivated species. Methanogenic communities in aquaculture ponds with higher contents of total nitrogen and organic matter had decreased species richness, while those with higher contents of ammonia and nitrite had an overall decreased abundance of methanogens and their respective diversities. Overall, in addition to the differences in cultivated species, the consequent differences in farming practices including the types and amounts of feeds used, the contents of total nitrogen, organic matter, ammonia and nitrite could all influence the methanogenic community in surface sediment of aquaculture ponds.  相似文献   

10.
Anaerobic digestion is a sustainable technology for the treatment of organic waste and production of biogas. Acetoclastic methanogenesis accounts for the majority of methane production in anaerobic digestion. Therefore, sustaining robust acetoclastic methanogens is important for stable process performance. Due to faster growth kinetics at high acetate concentrations, it has been considered that Methanosarcina would be more prevalent than Methanosaeta in unstable anaerobic digestion processes which frequently experience high acetate levels. Methanogen population dynamics were monitored in multiple continuous anaerobic digesters for 500 days. Results from quantitative polymerase chain reaction analysis show that Methanosaeta dominated over Methanosarcina in anaerobic digestion at high acetate levels up to 44 mM, suggesting the potential of Methanosaeta as a robust and efficient acetoclastic candidate for resilient anaerobic methane conversion. Further efforts are needed to identify mechanisms contributing to the unexpected competitiveness of these methanogens at high acetate levels observed in this study.  相似文献   

11.
The present work evaluated biomass productivity, carbon dioxide fixation rate, and biochemical composition of two microalgal species, Phaeodactylum tricornutum (Bacillariophyta) and Tetradesmus obliquus (Chlorophyta), cultivated indoors in high-technology photobioreactors (HT-PBR) and outdoors both in pilot ponds and low-technology photobioreactors in a greenhouse in southern Italy. Microalgae were grown in standard media, under nitrogen starvation, and in two liquid digestates obtained from anaerobic digestion of agro-zootechnical and vegetable biomass. P. tricornutum, cultivated in semi-continuous mode in indoor HT-PBRs with standard medium, showed a biomass productivity of 21.0?±?2.3 g m?2 d?1. Applying nitrogen starvation, the lipid productivity increased from 2.3 up to 4.5?±?0.5 g m?2 d?1, with a 24 % decrease of biomass productivity. For T. obliquus, a biomass productivity of 9.1?±?0.9 g m?2 d?1 in indoor HT-PBR was obtained using standard medium. Applying liquid digestates as fertilizers in open ponds, T. obliquus gave a biomass productivity (10.8?±?2.0 g m?2 d?1) not statistically different from complete medium such as P. tricornutum (6.5?±?2.2 g m?2 d?1). The biochemical data showed that the fatty acid composition of the microalgal biomass was affected by the different cultivation conditions for both microalgae. In conclusion, it was found that the microalgal productivity in standard medium was about doubled in HT-PBR compared to open ponds for P. tricornutum and was about 20 % higher for T. obliquus.  相似文献   

12.
Tequila vinasses (TVs) generated during Tequila production are brown liquid residues rich in nutrients. The nutrient content of agro-industrial effluents represents an excellent resource to support low-cost biomass production of microalgae; nonetheless, it is crucial to select the suitable microalgal strain to attain the highest biomass production in each residue used. In this study, biomass production, CO2 fixation from biogas, and cell compound accumulation by Chlorella vulgaris U162, Chlorella sp., Scenedesmus obliquus U169, and Scenedesmus sp. using biodigested and filtered TVs as culture medium were evaluated and compared with the conventional microalgal culture media, C30, BG-11, Bold 3N, and Bristol. The four microalgae evaluated attained the highest biomass production and CO2 fixation rate cultured in both residues, accumulating mainly carbohydrates and proteins although the most appropriate microalga to be cultured in TVs was Chlorella sp., recording 2.30 g L?1. Moreover, the nutrient ratio of filtered TVs was ideal to support biomass production while biodigested TVs need to be supplemented with nitrogen. Overall, these results demonstrated that tequila vinasses are an excellent resource to support high and quick biomass production of microalgae, which can be used to obtain biofuels as ethanol, biogas, and supplement food depicting an extra benefit during the appropriate disposal of this residue.  相似文献   

13.
Almost all the known isolates of acidophilic or acid-tolerant sulphate-reducing bacteria (SRB) belong to the spore-forming genus Desulfosporosinus in the Firmicutes. The objective of this study was to isolate acidophilic/acid-tolerant members of the genus Desulfovibrio belonging to deltaproteobacterial SRB. The sample material originated from microbial mat biomass submerged in mine water and was enriched for sulphate reducers by cultivation in anaerobic medium with lactate as an electron donor. A stirred tank bioreactor with the same medium composition was inoculated with the sulphidogenic enrichment. The bioreactor was operated with a temporal pH gradient, changing daily, from an initial pH of 7.3 to a final pH of 3.7. Among the bacteria in the bioreactor culture, Desulfovibrio was the only SRB group retrieved from the bioreactor consortium as observed by 16S rRNA-targeted denaturing gradient gel electrophoresis. Moderately acidophilic/acid-tolerant isolates belonged to Desulfovibrio aerotolerans-Desulfovibrio carbinophilus-Desulfovibrio magneticus and Desulfovibrio idahonensis-Desulfovibrio mexicanus clades within the genus Desulfovibrio. A moderately acidophilic strain, Desulfovibrio sp. VK (pH optimum 5.7) and acid-tolerant Desulfovibrio sp. ED (pH optimum 6.6) dominated in the bioreactor consortium at different time points and were isolated in pure culture.  相似文献   

14.
Here we analyze the first complete genome sequence of Pyrococcus chitonophagus. The archaeon was previously suggested to belong to the Thermococcus rather than the Pyrococcus genus. Whole genome phylogeny as well as whole proteome comparisons using all available complete genomes in Thermococcales clearly showed that the species belongs to the Pyrococcus genus. P. chitonophagus was originally isolated from a hydrothermal vent site and it has been described to effectively degrade chitin debris, and therefore is considered to play a major role in the sea water ecology and metabolic activity of microbial consortia within hot sea water ecosystems. Indeed, an obvious feature of the P. chitonophagus genome is that it carries proteins showing complementary activities for chitin degradation, i.e. endo- and exo-chitinase, diacetylchitobiose deacetylase and exo-β-d glucosaminidase activities. This finding supports the hypothesis that compared to other Thermococcales species P. chitonophagus is adapted to chitin degradation.  相似文献   

15.
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.  相似文献   

16.

Objective

To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential.

Results

Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain.

Conclusion

A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.
  相似文献   

17.
Bacterial species of Bacillus, Lactobacillus, and Bifidobacterium in the intestinal tract have been used as probiotics. Selections for probiotic candidates by the culture-based approaches are time-consuming and labor-consuming. The aim of this study was to develop a new method based on sequencing strategies to select the probiotic Bacillus, Lactobacillus, and Bifidobacterium. The Illumina-based sequencing strategies with different specific primers for Bacillus, Clostridium, and Bifidobacterium were applied to analyze diversity of the genera in goat feces. The average number of different Bacillus, Clostridium, and Bifidobacterium OTUs (operational taxonomic units) at the 97% similarity level ranged from 1922 to 63172. The coverage index values of Bacillus, Clostridium, and Bifidobacterium calculated from the bacterial OTUs were 0.89, 0.99, and 1.00, respectively. The most genera of Bacillus (37.9%), Clostridium (53%), and Bifidobacterium (99%) were detected in goat feces by the Illumina-based sequencing with the specific primers of the genera, respectively. Higher phylogenetic resolutions of the genera in goat feces were successfully established. The results suggest that the selection for probiotic Bacillus, Clostridium, and Bifidobacterium based on the Illumina sequencing with their specific primers is reliable and feasible, and the core Bacillus, Clostridium, and Bifidobacterium species of healthy goats possess the potentials as probiotic microbial consortia.  相似文献   

18.
Marine macroalgae are potential sustainable feedstock for biorefinery. However, this use of macroalgae is limited today mostly because macroalgae farming takes place in rural areas in medium- and low-income countries, where technologies to convert this biomass to chemicals and biofuels are not available. The goal of this work is to develop models to enable optimization of material and exergy flows in macroalgal biorefineries. We developed models for the currently widely cultivated red macroalgae Kappaphycus alvarezii being biorefined for the production of bioethanol, carrageenan, fertilizer, and biogas. Using flux balance analysis, we developed a computational model that allows the prediction of various fermentation scenarios and the identification of the most efficient conversion of K. alvarezii to bioethanol. Furthermore, we propose the potential implementation of these models in rural farms that currently cultivate Kappaphycus in Philippines and in India.  相似文献   

19.
From the leaves of three urban trees (Tilia sp., Acer sp., and Fraxinus sp.), 180 strains degrading phenanthrene, naphthalene, and salicylate were isolated by direct plating and enrichment cultures. The leaves of each tree species were characterized by a specific profile of aromatic hydrocarbon-degrading microflora. Members of the type Actinobacteria were predominant in the case of direct plating on media with phenanthrene and naphthalene. Enrichment cultures with phenanthrene and salicylate were shown to yield microbial consortia, the composition of which changed with time. Members of the type Proteobacteria were predominant in these consortia. No plasmids of polycyclic aromatic hydrocarbon degradation of the P-7 and P-9 incompatibility groups were revealed in the studied strains.  相似文献   

20.

Background and aims

Carpobrotus spp. are amongst the most impactful and widespread plant invaders of Mediterranean habitats. Despite the negative ecological impacts on soil and vegetation that have been documented, information is still limited about the effect by Carpobrotus on soil microbial communities. We aimed to assess the changes in the floristic, soil and microbial parameters following the invasion by Carpobrotus cfr. acinaciformis within an insular Mediterranean ecosystem.

Methods

Within three study areas a paired-site approach, comparing an invaded vs. a non-invaded plot, was established. Within each plot biodiversity indexes, C and N soil content, pH and microbial biomass and structure (bacterial and fungal) were assessed.

Results

Invaded plots showed a decrease of α-species richness and diversity. The least represented plant species in invaded plots were those related to grassland habitats. In all invaded soils, a significant increase of carbon and nitrogen content and a significant decrease of pH were registered. Carpobrotus significantly increased bacterial and fungal biomass and altered soil microbial structure, particularly favoring fungal growth.

Conclusions

Carpobrotus may deeply impact edaphic properties and microbial communities and, in turn, these strong modifications probably increase its invasive potential and its ability to overcome native species, by preventing their natural regeneration.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号