首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
骨髓瘤细胞和单个B细胞可融合形成杂交瘤细胞,这种细胞分离并克隆后可产生针对单一表位,且结构和功能相同的抗体,即单克隆抗体(monoclonal antibody, mAb)。单克隆抗体发展历程经历了四个阶段。其制备技术也在不断革新与发展。目前单克隆抗体技术发展日益成熟,在疾病治疗与诊断中发挥着关键的作用。单克隆抗体与天然抗体不同,具有效价高、特异性强、交叉反应少、可大量制备,靶向性高等特点。mAb可用于诊断及治疗感染性疾病、自身免疫病以及癌症等。对mAb的发展历程及mAb在抗感染性疾病中的应用进行简要阐述。  相似文献   

4.
The central role of T lymphocytes in the initiation, regulation and propagation of autoimmune diseases defines them as most suitable targets for selective immunotherapy. The recent advance in culturing human and animal T cell lines allows us to select monoclonal antibodies specific for differentiation antigens expressed by activated T lymphocytes. We selected a monoclonal antibody cytotoxic for a subpopulation of activated rat T cells. In vivo, this antibody effectively blocks immune responses to foreign antigens or autoantigen and prevents development of autoimmune diseases like experimental allergic encephalomyelitis and adjuvant arthritis. Even already established disease can be blocked by a single injection of antibody. Furthermore, this monoclonal antibody can be used to monitor the course of autoimmune disease progression from peripheral blood samples.  相似文献   

5.
Neutralization of tumor necrosis factor-alpha (TNF-alpha) has become an effective therapeutic strategy for TNF-related autoimmune diseases. Due to the limitations of the large molecular inhibitors in the therapy, development of novel TNF-alpha inhibitors is very attractive and useful. In this study, based on the previously designed domain antibody, two novel human anti-TNF single-chain antibodies were constructed using modular consensus frameworks of human antibody as scaffold to display the antagonistic peptides. A variety of expression plasmids were used to determine the optimal expression system. The single-chain antibodies were always overexpressed in E.coli BL21(DE3) host as inclusion bodies. Under the optimized refolding conditions, the inclusion bodies were renatured successfully and the refolded single-chain antibodies could bind with TNF-alpha and block TNF-induced cytotoxicity on L929 cells. The bioactivity of the single-chain antibodies was significantly increased over the domain antibody.  相似文献   

6.
Treatment with monoclonal antibodies directed against the IA antigens of the MHC is known to alter the course and prevent a number of experimental autoimmune diseases. To determine whether the treatment in vivo with anti-IA antibodies is haplotype-specific, we studied the development of EAE in F1 (SJL/J X BALB/c) mice following anti-IA antibody therapy. We report that treatment of animals with monoclonal antibody directed against the high responder allele product, I-As, was successful in preventing disease when therapy was begun either at the time of immunization with antigen, or following passive transfer of MBP-sensitized T cells. Therapy with antibody directed to the low responder allele product (I-Ad), while effective when used at the time of immunization with antigen, was ineffective following passive transfer of MBP-sensitized lymphocytes.  相似文献   

7.
A major goal of immunotherapy for autoimmune diseases and transplantation is induction of regulatory T cells that mediate immunologic tolerance. The mucosal immune system is unique, as tolerance is preferentially induced after exposure to antigen, and induction of regulatory T cells is a primary mechanism of oral tolerance. Parenteral administration of CD3-specific monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We found that orally administered CD3-specific antibody is biologically active in the gut and suppresses autoimmune encephalomyelitis both before induction of disease and at the height of disease. Orally administered CD3-specific antibody induces CD4+ CD25- LAP+ regulatory T cells that contain latency-associated peptide (LAP) on their surface and that function in vitro and in vivo through a TGF-beta-dependent mechanism. These findings identify a new immunologic approach that is widely applicable for the treatment of human autoimmune conditions.  相似文献   

8.
Targeted immunotherapies hold great promise for the treatment and cure of autoimmune diseases. The efficacy of CD3-specific monoclonal antibody therapy in mice and humans stems from its ability to re-establish immune homeostasis in treated individuals. This occurs through modulation of the T-cell receptor (TCR)-CD3 complex (also termed antigenic modulation) and/or induction of apoptosis of activated autoreactive T cells, which leaves behind 'space' for homeostatic reconstitution that favours selective induction, survival and expansion of adaptive regulatory T cells, which establishes long-term tolerance. This Review summarizes the pre-clinical and clinical studies of CD3-specific monoclonal antibody therapy and highlights future opportunities to enhance the efficacy of this potent immunotherapeutic.  相似文献   

9.
New cytokine therapeutics for inflammatory bowel disease   总被引:8,自引:0,他引:8  
Stokkers PC  Hommes DW 《Cytokine》2004,28(4-5):167-173
Conventional therapy for inflammatory bowel diseases rely on corticosteroids and 5-aminosalicylates combined with immunosuppressive agents for maintenance. These drugs are not always effective and may inflict serious side effects. Other therapies are therefore awaited. Infliximab, a monoclonal antibody against the pro-inflammatory cytokine TNF-alpha has been successfully applied as a treatment for Crohn's disease. The mechanism of action of this drug extends beyond the level of TNF-alpha scavenging and includes induction of apoptosis of effector cells. Numerous anti-TNF antibodies have been developed and are currently evaluated in clinical trials. Other targets for monoclonal antibodies include integrins and cytokines involved in T-cell differentiation and activation. Likewise recombinant proteins that moderate TNF bioactivity and lymphocyte function have been developed. The therapeutic effect of recombinant interleukin-10 seems to be dependent on local delivery of the protein. Antisense therapy targeting lymphocyte migration has also been tested in IBD. Finally, the conventional drug thalidomide and possibly MAP-kinase inhibitors may become novel treatment entities for IBD.  相似文献   

10.
B cells are essential to the development of systemic lupus erythematosus (SLE). The chimeric monoclonal antibody rituximab depletes B cells by targeting the pan-B-cell surface marker CD20. Preliminary experience with this agent in SLE and other autoimmune diseases has been encouraging. Controlled trials in SLE will be necessary to determine whether rituximab is useful therapy in this disease, and will teach us more about the roles of B cells in its pathogenesis.  相似文献   

11.
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.  相似文献   

12.
Fas antigen (Fas) is a cell surface receptor molecule introducing apoptosis-inducing signals into Fas-bearing cells by stimulation with Fas ligand or agonistic anti-Fas monoclonal antibodies. Fas system has been implicated in the regulation of homeostasis of peripheral T and B lymphocytes including elimination of autoreactive cells, and in the exclusion of tumor and virus-infected cells. Fas system, however, also plays a role in the mechanisms responsible for tissue disruption in tissue-specific autoimmune disease and fulminant hepatitis. In this review, I describe how we prepared the original anti-human Fas monoclonal antibody with associated cell-killing activity, and I propose here a strategy of therapeutic use of a novel anti-Fas monoclonal antibody for autoimmune and other diseases.  相似文献   

13.
于涛  韩英伦  肖蓉  刘欣  李庆伟 《遗传》2013,35(1):55-61
单克隆抗体(Monoclonal antibody, mAb)在癌症以及自身免疫等疾病的诊断与治疗中得到广泛应用, 并且取得了重大进展。当今应用于临床的单克隆抗体是在免疫球蛋白的基础上进行改造研发而得。然而近期发现的无颌类脊椎动物的特异性抗原受体-可变淋巴细胞受体(Variable lymphocyte receptor, VLR), 为抗体类试剂或药物的研发提供了新的视角。与免疫球蛋白(Immunoglobulins, Ig)相比, VLR与抗原结合的特异性、亲和力及稳定性都优于Ig类抗体, 并且抗原特异性单克隆VLR的制备技术日趋成熟。因此, VLR在临床诊断和治疗中具有更高的应用价值, 并可能成为新一代的抗体药物。文章就VLR的基本特征、制备方法及其应用前景进行综述, 为实现VLR在临床诊断与治疗等领域中的应用提供有益参考。  相似文献   

14.
Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface‐exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab‐TNFα and Infliximab‐TNFα complexes modeled from negative stain EM and cryo‐EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab‐TNFα and Infliximab‐TNFα. The 2:2 complex structures of Adalimumab‐TNFα and Infliximab‐TNFα show diamond‐shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab‐TNFα or Infliximab‐TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo‐EM analysis of 3:2 Adalimumab‐TNFα complex generated a low‐resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα.  相似文献   

15.
The immune response to Mycobacterium tuberculosis (Mtb) infection is complex. Experimental evidence has revealed that tumor necrosis factor (TNF) plays a major role in host defense against Mtb in both active and latent phases of infection. TNF-neutralizing drugs used to treat inflammatory disorders have been reported to increase the risk of tuberculosis (TB), in accordance with animal studies. The present study takes a computational approach toward characterizing the role of TNF in protection against the tubercle bacillus in both active and latent infection. We extend our previous mathematical models to investigate the roles and production of soluble (sTNF) and transmembrane TNF (tmTNF). We analyze effects of anti-TNF therapy in virtual clinical trials (VCTs) by simulating two of the most commonly used therapies, anti-TNF antibody and TNF receptor fusion, predicting mechanisms that explain observed differences in TB reactivation rates. The major findings from this study are that bioavailability of TNF following anti-TNF therapy is the primary factor for causing reactivation of latent infection and that sTNF—even at very low levels—is essential for control of infection. Using a mathematical model, it is possible to distinguish mechanisms of action of the anti-TNF treatments and gain insights into the role of TNF in TB control and pathology. Our study suggests that a TNF-modulating agent could be developed that could balance the requirement for reduction of inflammation with the necessity to maintain resistance to infection and microbial diseases. Alternatively, the dose and timing of anti-TNF therapy could be modified. Anti-TNF therapy will likely lead to numerous incidents of primary TB if used in areas where exposure is likely.  相似文献   

16.
TNFα-targeting therapy with the use of the drugs Etanercept, Infliximab, and Adalimumab is used in the clinical treatment of various inflammatory and immune diseases. Although all of these reagents function to disrupt the interaction between TNFα and its receptors, clinical investigations showed the advantages of Adalimumab treatment compared with Etanercept and Infliximab. However, the underlying molecular mechanism of action of Adalimumab remains unclear. In our previous work, we presented structural data on how Infliximab binds with the E-F loop of TNFα and functions as a TNFα receptor-binding blocker. To further elucidate the variations between TNFα inhibitors, we solved the crystal structure of TNFα in complex with Adalimumab Fab. The structural observation and the mutagenesis analysis provided direct evidence for identifying the Adalimumab epitope on TNFα and revealed the mechanism of Adalimumab inhibition of TNFα by occupying the TNFα receptor-binding site. The larger antigen-antibody interface in TNFα Adalimumab also provided information at a molecular level for further understanding the clinical advantages of Adalimumab therapy compared with Infliximab.  相似文献   

17.
Interleukin-6 (IL-6) plays a central role in the pathogenesis of several autoimmune and inflammatory diseases as well as B-cell lymphoproliferative disorders. This work describes the effects of the recombinant or adenovirally-delivered IL-6 superantagonist Sant7, anti-IL-6 and IL-6 receptor monoclonal antibodies in a severe murine model of human B-cell lymphoma induced in SCID mice by transplantation of an LCL-41 cell line variant (isotype-switched IgM>IgG). Survival of 60% of the animals treated with anti-gp130 was observed up to day 33, while about 20% of the animals survived with anti-gp80 and Sant7 treatment. No survival was observed with the anti-IL-6 monoclonal antibody treatment. No significant change in serum and peritoneal levels of human IL-6 (hIL-6) and soluble human IL-6 receptor (shIL-6R) was observed in the recombinant Sant7-treated group towards the control group. The anti-gp80 monoclonal antibody induced significant increase of both hIL-6R and hIL-6 in serum and peritoneum. The anti-gp130 monoclonal antibody treatment determined a reduction of the seric shIL-6R and a significant increase of the seric hIL-6. Anti-IL-6 monoclonal antibody administration resulted in a reduction of serum and in an increase of peritoneal hIL-6. Treatment with adenoviral Sant7 was associated with a reduction of circulating shIL-6R, hIgG and mSAP. However, only marginal anti-tumor efficacy of the adenoviral Sant7 was observed. Overall, the present data suggest a potential for anti-hIL-6 therapy in B-cell lymphomas. Less severe animal models might be useful to better evaluate Sant7 efficacy alone or in combination with other anti-IL-6 therapeutics.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic debilitating disease of the joints. Both the innate and adaptive immune responses participate in the development and progression of RA. While several therapeutic reagents, such as TNF-α agonists, have been successfully developed for the clinical use in the treatment of RA, more than half of the patients do not respond to anti-TNF therapy. Therefore, new therapeutic reagents are needed. Recent studies have shown that sirtuin 1 (Sirt1), a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, is a critical negative regulator of both the innate and adaptive immune response in mice, and its altered functions are likely to be involved in autoimmune diseases. Small molecules that modulate Sirt1 functions are potential therapeutic reagents for autoimmune inflammatory diseases. This review highlights the role of Sirt1 in immune regulation and RA.  相似文献   

19.
早期抗体药物是鼠源单克隆抗体,存在免疫原性强、半衰期短等问题。历经数十年的发展,抗体药物从最初的鼠源单抗,逐步发展为人鼠嵌合抗体、人源化抗体及全人源化抗体。通过片段重组、位点修饰、药物偶联等方法,科研人员研发了包括抗体融合蛋白、抗体偶联药物、双特异性抗体、小分子抗体片段等形式多样的抗体药物。抗体药物在恶性肿瘤、自身免疫病、感染性疾病的治疗上发挥重要作用。通过对抗体药物人源化历程,不同类型的抗体结构和特点,以及抗体药物在新型冠状病毒肺炎治疗中的应用进行综述,并对抗体药物的发展前景进行展望,以期为我国抗体药物的研发提供参考。  相似文献   

20.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease mediated by CD4+ T cells. Prior studies have established that monoclonal anti-CD4 antibodies can reverse EAE. To determine whether immunoglobulin isotype plays a role in the therapy of EAE with anti-CD4 antibody, an isotype switch variant family of the mouse IgG1 anti-rat CD4 antibody W3/25 was isolated with the fluorescence-activated cell sorter. The IgG1, IgG2b, and IgG2a W3/25 isotype variants all had identical binding capacities for rat CD4+ T cells. Although all three W3/25 isotypes showed some beneficial effects in the amelioration of EAE, the IgG1 and IgG2a W3/25 antibodies were superior to the IgG2b W3/25 in the treatment of EAE. Multiparameter fluorescence-activated cell sorter analysis of T cell subpopulations from treated rats showed that none of the antibodies of the W3/25 isotype switch variant family substantially depleted CD4+ target cells in vivo. These experiments demonstrate that immunoglobulin isotype is important in the monoclonal antibody therapy of autoimmune disease. They indicate that therapy of EAE may be successful without a major depletion of CD4+ lymphocytes. Immunotherapy may be optimized by selecting an appropriate isotype of a monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号