首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.  相似文献   

2.
Prader-Willi syndrome (PWS) is most often the result of a deletion of bands q11.2-q13 of the paternally derived chromosome 15, but it also occurs either because of maternal uniparental disomy (UPD) of this region or, rarely, from a methylation imprinting defect. A significant number of cases are due to structural rearrangements of the pericentromeric region of chromosome 15. We report two cases of PWS with UPD in which there was a meiosis I nondisjunction error involving an altered chromosome 15 produced by both a translocation event between the heteromorphic satellite regions of chromosomes 14 and 15 and recombination. In both cases, high-resolution banding of the long arm was normal, and FISH of probes D15S11, SNRPN, D15S10, and GABRB3 indicated no loss of this material. Chromosome heteromorphism analysis showed that each patient had maternal heterodisomy of the chromosome 15 short arm, whereas PCR of microsatellites demonstrated allele-specific maternal isodisomy and heterodisomy of the long arm. SNRPN gene methylation analysis revealed only a maternal imprint in both patients. We suggest that the chromosome structural rearrangements, combined with recombination in these patients, disrupted normal segregation of an imprinted region, resulting in uniparental disomy and PWS.  相似文献   

3.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

4.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

5.
Multiple mechanisms are responsible for the development of Prader Willi syndrome (PWS), the most common genetic cause of obesity in childhood. Molecular findings are usually deletions and uniparental disomy (UPD) of the 15q11-13 region. Rarely, structural rearrangements of the pericentromeric region of chromosome 15 are also detected. Two cases with mild PWS phenotype and complex maternal UPD identified by microsatellite analysis are described: the first patient had uniparental iso and heterodisomy and the second displayed biallelic inheritance and uniparental isodisomy.  相似文献   

6.
普拉德-威利综合征(Prader-Willi Syndrome,PWS)是一种基因组印记相关的疾病,是引起肥胖最常见的遗传综合征。分子和细胞遗传学检查对于该病早期诊断非常重要。通过选择PWS典型缺失区域内、外的STR遗传标记,初步建立了一种适用于中国人群的PWS核心家庭连锁分析方法,并用该方法确定了一例缺失型和一例异源单亲二体型PWS患者,经甲基化特异性PCR和高分辨染色体核型分析验证上述结果正确。同时,该连锁分析方法可以具体区分PWS的分子发病类型,从而为PWS家庭的遗传咨询提供信息,并为进一步研究PWS基因型和表型的关系提供了可能。  相似文献   

7.
Uniparental disomy for chromosome 16 in humans.   总被引:16,自引:6,他引:10  
The association between chromosomal mosaicism observed on chorionic villus sampling (CVS) and poor pregnancy outcome has been well documented. CVS mosaicism usually represents abnormal cell lines confined to the placenta and often involves chromosomal trisomy. Such confined placental mosaicism (CPM) may occur when there is complete dichotomy between a trisomic karyotype in the placenta and a normal diploid fetus or when both diploid and trisomic components are present within the placenta. Gestations involving pure or significant trisomy in placental lineages associated with a diploid fetal karyotype probably result from a trisomic zygote which has lost one copy of the trisomic chromosome in the embryonic progenitor cells during cleavage. Uniparental disomy would be expected to occur in one-third of such cases. Trisomy of chromosome 7, 9, 15, or 16 is most common among the gestations with these dichotomic CPMs. Nine pregnancies with trisomy 16 confined to the placenta were prenatally diagnosed. Pregnancy outcome, levels of trisomic cells in term placentas, and fetal uniparental disomy were studied. Intrauterine growth retardation (IUGR), low birthweight, or fetal death was observed in six of these pregnancies and correlated with high levels of trisomic cells in the term placentas. Four of the five cases of IUGR or fetal death showed fetal uniparental disomy for chromosome 16. One of the infants with maternal uniparental disomy 16 had a significant malformation (imperforate anus). All infants with normal intrauterine growth showed term placentas with low levels of trisomic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Prader-Willi syndrome (PWS) is a neurobehavioral disorder caused by deletions in the 15q11-q13 region, by maternal uniparental disomy of chromosome 15 or by imprinting defects. Structural rearrangements of chromosome 15 have been described in about 5% of the patients with typical or atypical PWS phenotype. An 8-year-old boy with a clinical diagnosis of PWS, severe neurodevelopmental delay, absence of speech and mental retardation was studied by cytogenetic and molecular techniques, and an unbalanced de novo karyotype 45,XY,der(4)t(4;15)(q35;q14),-15 was detected after GTG-banding. The patient was diagnosed by SNURF-SNRPN exon 1 methylation assay, and the extent of the deletions on chromosomes 4 and 15 was investigated by microsatellite analysis of markers located in 4qter and 15q13-q14 regions. The deletion of chromosome 4q was distal to D4S1652, and that of chromosome 15 was located between D15S1043 and D15S1010. Our patient's severely affected phenotype could be due to the extent of the deletion, larger than usually seen in PWS patients, although the unbalance of the derivative chromosome 4 cannot be ruled out as another possible cause. The breakpoint was located in the subtelomeric region, very close to the telomere, a region that has been described as having the lowest gene concentrations in the human genome.  相似文献   

9.
About 70% of patients with Prader-Willi syndrome (PWS) and Angelman syndrome (AS) have a common interstitial de novo microdeletion encompassing paternal (PWS) or maternal (AS) loci D15S9 to D15S12. Most of the non-deletion PWS patients and a small number of non-deletion AS patients have a maternal or paternal uniparental disomy (UPD)15, respectively. Other chromosome 15 rearrangements and a few smaller atypical deletions, some of the latter being associated with an abnormal methylation pattern, are rarely found. Molecular and fluorescence in situ hybridization (FISH) analysis have both been used to diagnose PWS and AS. Here, we have evaluated, in a typical routine cytogenetic laboratory setting, the efficiency of a diagnostic strategy that starts with a FISH deletion assay using Alu-PCR (polymerase chain reaction)-amplified D15S10-positive yeast artificial chromosome (YAC) 273A2. We performed FISH in 77 patients suspected of having PWS (n = 66) or AS (n = 11) and compared the results with those from classical cytogenetics and wherever possible with those from DNA analysis. A FISH deletion was found in 16/66 patients from the PWS group and in 3/11 patients from the AS group. One example of a centromere 15 co-hybridization performed in order to exclude cryptic translocations or inversions is given. Of the PWS patients, 14 fulfilled Holm’s criteria, but two did not. DNA analysis confirmed the commmon deletion in all patients screened by the D15S63 methylation test and in restriction fragment length polymorphism dosage blots. In 3/58 non-deletion patients, other chromosomal aberrations were found. Of the non-deleted group, 27 subjects (24 PWS, 3 AS) were tested molecularly, and three patients with an uniparental methylation pattern were found in the PWS group. The other 24/27 subjects had neither a FISH deletion nor uniparental methylation, but two had other cytogenetic aberrations. Given that cytogenetic analysis is indispensable in most patients, we find that the FISH deletion assay with YAC 273A2 is an efficient first step for stepwise diagnostic testing and mutation-type analysis of patients suspected of having PWS or AS. Received: 14 November 1995  相似文献   

10.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are distinct genetic disorders that are caused by a deletion of chromosome region 15q11-13 or by uniparental disomy for chromosome 15. Whereas PWS results from the absence of a paternal copy of 15q11-13, the absence of a maternal copy of 15q11-13 leads to AS. We have found that an MspI/HpaII restriction site at the D15S63 locus in 15q11-13 is methylated on the maternally derived chromosome, but unmethylated on the paternally derived chromosome. Based on this difference, we have devised a rapid diagnostic test for patients suspected of having PWS and AS.  相似文献   

11.
Bloom Syndrome and Maternal Uniparental Disomy for Chromosome 15   总被引:4,自引:1,他引:3  
Bloom syndrome (BS) is an autosomal recessive disorder characterized by increases in the frequency of sister-chromatid exchange and in the incidence of malignancy. Chromosome-transfer studies have shown the BS locus to map to chromosome 15q. This report describes a subject with features of both BS and Prader-Willi syndrome (PWS). Molecular analysis showed maternal uniparental disomy for chromosome 15. Meiotic recombination between the two disomic chromosomes 15 has resulted in heterodisomy for proximal 15q and isodisomy for distal 15q. In this individual BS is probably due to homozygosity for a gene that is telomeric to D15S95 (15q25), rather than to genetic imprinting, the mechanism responsible for the development of PWS. This report represents the first application of disomy analysis to the regional localization of a disease gene. This strategy promises to be useful in the genetic mapping of other uncommon autosomal recessive conditions.  相似文献   

12.
Prader-Willi syndrome (PWS) is a multisystemic disorder caused by the loss of expression of paternally transcribed genes in the PWS critical region of chromosome 15. Various molecular mechanisms are known to lead to PWS: deletion 15q11-q13 (75% of cases), maternal uniparental disomy (matUPD15) (23%) and imprinting defects (2%). FISH and microsatellite analysis are required to establish the molecular etiology, which is essential for appropriate genetic counseling and care management. We characterized an Argentinean population, using five microsatellite markers (D15S1035, D15S11, D15S113, GABRB3, D15S211) chosen to develop an appropriate cost-effective method to establish the parental origin of chromosome 15 in nondeleted PWS patients. The range of heterozygosity for these five microsatellites was 0.59 to 0.94. The average heterozygosity obtained for joint loci was 0.81. The parental origin of chromosome 15 was established by microsatellite analysis in 19 of 21 non-deleted PWS children. We also examined the origin of the matUPD15; as expected, most of disomies were due to a maternal meiosis I error. The molecular characterization of this set of five microsatellites with high heterozygosity and polymorphism information content improves the diagnostic algorithm of Argentinean PWS children, contributing significantly to adequate genetic counseling of such families.  相似文献   

13.
The Prader-Willi syndrome (PWS) is a developmental disorder caused by a deficiency of paternal contributions, arising from differently sized deletions, uniparental disomy or rare imprinting mutations, in the chromosome region 15q11–q13. We studied 41 patients with suspected PWS and their parents using cytogenetic and molecular techniques. Of the 27 clinically typical PWS patients, 23 (85%) had a molecular deletion that could be classified into four size categories. Only 15 of them (71%) could be detected cytogenetically. Maternal uniparental heterodisomy was observed in four cases. The rest of the patients showed no molecular defects including rare imprinting mutations. In our experience, the use of the methylation test with the probe PW71 (D15S63), together with the probe hN4HS (SNRPN), which distinguishes between a deletion and uniparental disomy, is the method of choice for the diagnosis of PWS.  相似文献   

14.
Thirty-seven patients presenting features of the Prader-Willi syndrome (PWS) have been examined using cytogenetic and molecular techniques. Clinical evaluation showed that 29 of these patients fulfilled diagnostic criteria for PWS. A deletion of the 15q11.2-q12 region could be identified molecularly in 21 of these cases, including several cases where the cytogenetics results were inconclusive. One clinically typical patient is deleted at only two of five loci normally included in a PWS deletion. A patient carrying a de novo 13;X translocation was not deleted for the molecular markers tested but was clinically considered to be "atypical" PWS. In addition, five cases of maternal heterodisomy and two of isodisomy for 15q11-q13 were observed. All of the eight patients who did not fulfill clinical diagnosis of PWS showed normal maternal and paternal inheritance of chromosome 15 markers; however, one of these carried a ring-15 chromosome. A comparison of clinical features between deletion patients and disomy patients shows no significant differences between the two groups. The parental ages at birth of disomic patients were significantly higher than those for deletion patients. As all typical PWS cases showed either a deletion or disomy of 15q11.2-q12, molecular examination should provide a reliable diagnostic tool. As the disomy patients do not show either any additional or more severe features than typical deletion patients do, it is likely that there is only one imprinted region on chromosome 15 (within 15q11.2-q12).  相似文献   

15.
BACKGROUND: Russell-Silver syndrome (RSS) has been associated with maternal uniparental disomy (UPD) for chromosome 7 although the etiology of the syndrome is still unknown. Cases of RSS associated with maternal UPD7 have involved isodisomies, heterodisomies, and mixed isodisomy with heterodisomy simultaneously. This publication is a follow-up report of the postnatal clinical outcome of the first prenatally suspected case of combined mosaic trisomy 7 with maternal uniparental disomy of chromosome 7 (UPD7). CASE: The diagnosis of RSS in the proband was suspected prenatally because trisomy 7 mosaicism (47,XX,+7[13]/46,XX[19]) and maternal uniparental heterodisomy 7 were both found in amniotic fluid cells. Cord blood karyotype analysis showed only disomic cells (46,XX[50]), whereas postpartum chorionic villus analysis was completely trisomic for chromosome 7 (47,XX,+7[19]). Postnatally, the diagnosis of RSS was confirmed by physical findings, her trisomy 7 mosaicism was confirmed by cytogenetic analysis of her skin biopsy (47,XX,+7[9]/46,XX[20]) and her UPD7 was confirmed on both peripheral blood and skin biopsy using microsatellite markers. During infancy, the proband experienced growth deficiency, persistent hypoglycemia, and psychomotor developmental delay. CONCLUSIONS: Trisomic rescue as a life-saving mechanism, with subsequent chromosomal mosaicism in combination with UPD may occur more frequently in RSS than has been reported. Systematic testing of cases suspected prenatally or postnatally would be informative regarding the individual contribution of each factor. Imprinting, loss of heterozygosity for recessive genes, and mosaicism may explain the short stature, asymmetry, and the variable expression of the phenotype. The contribution of these mechanisms to the syndrome should be evaluated in these cases.  相似文献   

16.
Allele-specific replication differences have been observed in imprinted chromosomal regions. We have exploited this characteristic of an imprinted region by using FISH at D15S9 and SNRPN (small nuclear ribonucleo protein N) on interphase nuclei to distinguish between Angelman and Prader-Willi syndrome patient samples with uniparental disomy of chromosome 15q11-q13 (n = 11) from those with biparental inheritance (n = 13). The familial recurrence risks are low when the child has de novo uniparental disomy and may be as high as 50% when the child has biparental inheritance. The frequency of interphase cells with asynchronous replication was significantly lower in patients with uniparental disomy than in patients with biparental inheritance. Within the sample population of patients with biparental inheritance, those with altered methylation and presumably imprinting center mutations could not be distinguished from those with no currently detectable mutation. This test is cost effective because it is performed on interphase cells from the same hybridized cytological preparation in which a deletion is excluded, and additional specimens are not required to determine the parental origin of chromosome 15.  相似文献   

17.
Prader-Willi syndrome (PWS) is a contiguous gene syndrome caused by the loss of function of genes situated within the 15q11-q13 region. The loss of function arises as a result of paternally derived mutations complemented by maternal imprinting. The molecular events underlying the disorder include interstitial deletions (70%), uniparental disomy (UPD) (25%), imprinting center defects (<5%), and rarely chromosomal translocations (<1%). The standard diagnosis of PWS is based on clinical observations and genetic investigations involving DNA methylation studies and fluorescence in situ hybridization (FISH) analysis. The absence of a paternal methylation pattern within 15q11 is sufficient for a diagnosis of PWS, and FISH analyses are used for the additional categorization of patients as either deletion or nondeletion. The main limitation of these investigations is that they neither determine the size of the molecular deletions nor permit detection of individuals with microdeletions in the PWS imprinting center that regulates imprinting in this region. We have designed and implemented a real-time PCR assay using genomic DNA and SYBR green I intercalating dye to determine the size of the chromosomal deletions in patients with PWS. This has been successfully performed on genomic DNA isolated from both peripheral blood leukocytes and buccal epithelial cells. Through this assay, the two common deletion classes in PWS were observed, and all results were 100% concordant with previous FISH assays performed on the same patients.  相似文献   

18.
We report a case of mosaic trisomy 15 with mental retardation, facial dysmorphism, and hemihypertrophy, but no manifestations of Prader-Willi or Angelman syndromes. Mosaic trisomy 15 (11%) was discovered at the amniocentesis. Uniparental disomy for chromosome 15 was excluded by molecular analysis. Post-natal blood karyotype and examination were normal. Mosaic was confirmed on skin fibroblasts, placenta and cord. Evolution was marked by progressive right hemi-hypertrophy, and developmental delay. Our case is the first patient reported with hemihypertrophy associated with mosaic trisomy 15. The relevant literature is reviewed.  相似文献   

19.
Previously, 158 nuclear families with probands suspected of having either Prader Willi (PWS) or Angelman syndrome (AS) were analyzed with polymorphic DNA markers from the 15q11–13 region. These cases have been re-evaluated with the probe PW71 (D15S63), which detects parent-of-origin-specific alleles after digestion with a methylation-sensitive restriction enzyme (HpaII). Application of PW71 to DNA samples isolated from leucocytes, confirmed the deletions and uniparental disomies detected earlier by marker analysis, and resolved 50% of the previously uninformative (n=18) cases. PW71 and restriction fragment length polymorphism analysis indicated that, in all resolved cases, disomies of the 15q11–13 region were present. The use of PW71 increased the percentage of disomies detected in our PWS and AS patient groups. Almost 50% of our PWS patients and 17% of the AS patients showed a disomy of maternal or paternal origin, respectively. DNA of first trimester chorionic villi and of fibroblast cultures was not suitable for analysis with PW71 because of different methylation patterns. The application of PW71 is recommended for the diagnosis of the PWS and AS, with respect to DNA samples from blood.  相似文献   

20.
Angelman syndrome (AS) most frequently results from large (> or = 5 Mb) de novo deletions of chromosome 15q11-q13. The deletions are exclusively of maternal origin, and a few cases of paternal uniparental disomy of chromosome 15 have been reported. The latter finding indicates that AS is caused by the absence of a maternal contribution to the imprinted 15q11-q13 region. Failure to inherit a paternal 15q11-q13 contribution results in the clinically distinct disorder of Prader-Willi syndrome. Cases of AS resulting from translocations or pericentric inversions have been observed to be associated with deletions, and there have been no confirmed reports of balanced rearrangements in AS. We report the first such case involving a paracentric inversion with a breakpoint located approximately 25 kb proximal to the reference marker D15S10. This inversion has been inherited from a phenotypically normal mother. No deletion is evident by molecular analysis in this case, by use of cloned fragments mapped to within approximately 1 kb of the inversion breakpoint. Several hypotheses are discussed to explain the relationship between the inversion and the AS phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号