首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains surrounding these residues.  相似文献   

2.
Suggestions by Calvin about a role of inorganic pyrophosphate (PPi) in early photosynthesis and by Lipmann that PPi may have been the original energy-rich phosphate donor in biological energy conversion, were followed in the mid-1960s by experimental results with isolated chromatophore membranes from the purple photosynthetic bacterium Rhodospirillum rubrum. PPi was shown to be hydrolysed in an uncoupler stimulated reaction by a membrane-bound inorganic pyrophosphatase (PPase), to be formed at the expense of light energy in photophosphorylation and to be utilized as an energy donor for various energy-requiring reactions, as a first known alternative to ATP. This direct link between PPi and photosynthesis led to increasing attention concerning the role of PPi in both early and present biological energy transfer. In the 1970s, the PPase was shown to be a proton pump and to be present also in higher plants. In the 1990s, sequences of H(+)-PPase genes were obtained from plants, protists, bacteria and archaea and two classes of H(+)-PPases differing in K(+) sensitivity were established. Over 200 H(+)-PPase sequences have now been determined. Recent biochemical and biophysical results have led to new progress and questions regarding the H(+)-PPase family, as well as the families of soluble PPases and the inorganic polyphosphatases, which hydrolyse inorganic linear high-molecular-weight polyphosphates (HMW-polyP). Here we will focus attention on the H(+)-PPases, their evolution and putative active site motifs, response to monovalent cations, genetic regulation and some very recent results, based on new methods for obtaining large quantities of purified protein, about their tertiary and quaternary structures.  相似文献   

3.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a central role in the electrogenic translocation of protons from cytosol to the vacuole lumen at the expense of PP(i) hydrolysis. A fluorescent probe, fluorescein 5'-isothiocyanate (FITC), was used to modify a lysine residue of vacuolar H(+)-PPase. The enzymatic activity and its associated H(+) translocation of vacuolar H(+)-PPase were markedly decreased by FITC in a concentration-dependent manner. The inhibition of enzymatic activity followed pseudo-first-order rate kinetics. A double-logarithmic plot of the apparent reaction rate constant against FITC concentration yielded a straight line with a slope of 0.89, suggesting that the alteration of a single lysine residue on the enzyme is sufficient to inhibit vacuolar H(+)-PPase. Changes in K(m) but not V(max) values of vacuolar H(+)-PPase as inhibited by FITC were obtained, indicating that the labeling caused a modification in affinity of the enzyme to its substrate. FITC inhibition of vacuolar H(+)-PPase could be protected by its physiological substrate, Mg(2+)-PP(i). These results indicate that FITC might specifically compete with the substrate at the active site and the FITC-labeled lysine residue locates probably in or near the catalytic domain of the enzyme. The enhancement of fluorescence intensity and the blue shift of the emission maximum of FITC after modification of vacuolar H(+)-PPase suggest that the FITC-labeled lysine residue is located in a relatively hydrophobic region.  相似文献   

4.
Vacuolar H(+)-pyrophosphatase   总被引:14,自引:0,他引:14  
The H(+)-translocating inorganic pyrophosphatase (H(+)-PPase) is a unique, electrogenic proton pump distributed among most land plants, but only some alga, protozoa, bacteria, and archaebacteria. This enzyme is a fine model for research on the coupling mechanism between the pyrophosphate hydrolysis and the active proton transport, since the enzyme consists of a single polypeptide with a calculated molecular mass of 71-80 kDa and its substrate is also simple. Cloning of the H(+)-PPase genes from several organisms has revealed the conserved regions that may be the catalytic site and/or participate in the enzymatic function. The primary sequences are reviewed with reference to biochemical properties of the enzyme, such as the requirement of Mg(2)(+) and K(+). In plant cells, H(+)-PPase coexists with H(+)-ATPase in a single vacuolar membrane. The physiological significance and the regulation of the gene expression of H(+)-PPase are also reviewed.  相似文献   

5.
Light-induced proton uptake, light-induced carotenoid absorbance shift, photophosphorylation, and hydrolysis of Mg-ATP, Ca-ATP, and PPi in Rhodospirillum rubrum chromatophores are shown to be inhibited by the antibiotic equisetin. The Mg- and Ca-ATPase activities of purified F0F1-ATPase are inhibited by equisetin. In contrast, only the Ca-ATPase activity of purified F1-ATPase is decreased by equisetin, whereas the Mg-ATPase is stimulated. Both equisetin and N,N'-dicyclohexylcarbodiimide (DCCD) inhibit the hydrolytic activity of the purified H+-PPase but not the hydrolytic activity of soluble PPase from R. rubrum and yeast. The I50 for the PPi hydrolysis is near 20 microM for both equisetin and DCCD. The action of equisetin on membranes is compared to the effect of Triton X-100 and carbonyl cyanide p-trifluoromethoxyhydrazone. On the basis of these new data, equisetin is proposed to act nonspecifically on membranes and hydrophobic domains of proteins.  相似文献   

6.
R Shapiro  E A Fox  J F Riordan 《Biochemistry》1989,28(4):1726-1732
The role of lysines in the ribonucleolytic and angiogenic activities of human angiogenin has been examined by chemical modification and site-directed mutagenesis. It was demonstrated previously [Shapiro, R., Weremowicz, S., Riordan, J.F., & Vallee, B.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787] that extensive treatment with lysine reagents markedly decreases the ribonucleolytic activity of angiogenin. In the present study, limited chemical modification with 1-fluoro-2,4-dinitrobenzene followed by C18 high-performance liquid chromatography yielded several (dinitrophenyl)angiogenin derivaties. The major derivative formed had slightly increased enzymatic activity compared with the unmodified protein. Tryptic peptide mapping demonstrated the site of modification to be Lys-50. A second derivative, modified at Lys-60, was 34% active. Analysis of a third derivative indicated that modification of Lys-82 did not decrease activity. Thus, Lys-50 and Lys-82 are unessential for enzymatic activity while Lys-60 may play a minor role. No pure derivative modified at Lys-40, corresponding to the active-site residue Lys-41 of the homologous protein ribonuclease A, could be obtained by chemical procedures. Therefore, we employed oligonucleotide-directed mutagenesis to replace this lysine with glutamine or arginine. The Gln-40 derivative had less than 0.05% enzymatic activity compared with the unmodified protein and substantially reduced angiogenic activity when examined with the chick embryo chorioallantoic membrane assay. These results suggest that the angiogenic activity of the protein is dependent on an intact enzymatic active site. The Arg-40 derivative had 2.2% ribonucleolytic activity compared with unmodified angiogenin. The effects of reductive methylation of this derivative indicate that no lysines other than Lys-40 are critical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
H(+)-translocating pyrophosphatases (H(+)-PPases) are proton pumps that are found in many organisms, including plants, bacteria and protozoa. Streptomyces coelicolor is a soil bacterium that produces several useful antibiotics. Here we investigated the properties of the H(+)-PPase of S. coelicolor by expressing a synthetic DNA encoding the amino-acid sequence of the H(+)-PPase in Escherichia coli. The H(+)-PPase from E. coli membranes was active at a relatively high pH, stable up to 50 degrees C, and sensitive to N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide and acylspermidine. Enzyme activity increased by 60% in the presence of 120 mM K(+), which was less than the stimulation observed with plant vacuolar H(+)-PPases (type I). Substitutions of Lys-507 in the Gly-Gln-x-x-(Ala/Lys)-Ala motif, which is thought to determine the K(+) requirement of H(+)-PPases, did not alter its K(+) dependence, suggesting that other residues control this feature of the S. coelicolor enzyme. The H(+)-PPase was detected during early growth and was present mainly on the plasma membrane and to a lesser extent on intracellular membranous structures.  相似文献   

8.
Valyl-tRNA synthetase (ValRS) from Escherichia coli undergoes covalent valylation by a donor valyl adenylate synthesized by the enzyme itself. ValRS could also be modified, although to a lesser extent, by the noncognate isosteric substrate L-threonine from a donor threonyl adenylate synthesized by the synthetase itself, or by the nonsubstrate methionine from methionyl adenylate produced by catalytic amounts of methionyl-tRNA synthetase. MALDI mass spectrometry analysis designated lysines 154, 162, 170, 533, 554, 593, 894, 930, and 940 of ValRS as the target residues for the attachment of valine. Following autothreonylation, lysines 162, 170, 178, 277, 291, 554, 580, 593, 861, 894, and 930 were found to be modified. Finally, L-Met-labeled residues were lysines 118, 162, 170, 178, 277, and 938. Alignment of the available ValRS amino acid sequences showed that lysines 277 and 554 are strictly conserved (with the exception concerning replacement of Lys-277 with a methionine or a tyrosine in archaebacteria), suggesting that these residues might be functionally significant. Indeed, lysine 554 of ValRS is the first lysine of the Lys-Met-Ser-Lys-Ser signature of the catalytic site of class I aminoacyl-tRNA synthetases. Lys-277 which is labeled by L-threonine or L-methionine, and not by L-valine, is located at or near the editing site, in the three-dimensional structure of ValRS. The role of lysine 277 was evaluated by site-directed mutagenesis. The Lys277Ala mutant (K277A) exhibited a posttransfer Thr-tRNA(Val) editing rate that was significantly lower than that observed for the wild-type enzyme. In addition, the K277A substitution altered amino acid discrimination in the editing site, resulting in hydrolysis of the correctly charged cognate Val-tRNA(Val). Finally, significant amounts of mischarged Thr-tRNA(Val) were produced by the K277A mutant, and not by wild-type ValRS. Altogether, our results designate Lys-277 as a likely candidate for nucleophilic attack of misacylated tRNA in the editing site of ValRS.  相似文献   

9.
The H+-PPase activity was characterized in membrane fractions of ovary and eggs of Rhodnius prolixus. This activity is totally dependent on Mg2+, independent of K+ and strongly inhibited by NaF, IDP and Ca2+. The membrane proteins of eggs were analyzed by western blot using antibodies to the H+-PPase from Arabidopsis thaliana. The immunostain was associated with a single 65-kDa polypeptide. This polypeptide was immunolocalized in yolk granule membranes by optical and transmission electron microscopy. We describe the acidification of yolk granules in the presence of PPi and ATP. This acidification is inhibited in the presence of NAF, Ca2+ and antibodies against H+-PPase. These data show for the first time in animal cells that acidification of yolk granules involves an H+-PPase as well as H+-ATPase.  相似文献   

10.
Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.  相似文献   

11.
Calmodulin and calmodulin complexed with calcineurin phosphatase were trace labeled with [3H]acetic anhydride and the incorporation of [3H]acetate into each epsilon-amino lysine of calmodulin was measured. The relative reactivities of calmodulin lysines were higher in the presence of Ca2+ than in the presence of EGTA, and the order was: Lys-75 greater than Lys-94 greater than Lys-148 greater than or equal to Lys-77 greater than Lys-13 greater than or equal to Lys-21 greater than Lys-30. The changes in relative reactivity implied a change in conformation. When calmodulin was complexed with the phosphatase, Lys-21, Lys-77, and Lys-148 were most protected, implying that these residues are at or near the interaction sites or are conformationally perturbed by the interaction. Lys-30 and Lys-75 were slightly protected, lysine 13 showed no change, while lysine 94 significantly increased in reactivity. Comparison with results obtained from myosin light chain kinase using a similar technique (Jackson, A. E., Carraway, K. L., III, Puett, D., and Brew, K. (1986) J. Biol. Chem. 261, 12226-12232) reveals that calmodulin may interact with each of the two enzymes similarly at or near Lys-21, Lys-75, and Lys-148; one difference with phosphatase is that complex formation also involved Lys-77. These findings suggest that calmodulin interacts differently with its target enzymes.  相似文献   

12.
Bochar DA  Stauffacher CV  Rodwell VW 《Biochemistry》1999,38(48):15848-15852
Sequence analysis has revealed two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Crystal structures of ternary complexes of the Class II enzyme from Pseudomonas mevalonii revealed lysine 267 critically positioned at the active site. This observation suggested a revised catalytic mechanism in which lysine 267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA and subsequently of bound mevaldehyde, an inference supported by mutagenesis of lysine 267 to aminoethylcysteine. For this mechanism to be general, Class I HMG-CoA reductases ought also to possess an active site lysine. Three lysines are conserved among all Class I HMG-CoA reductases. The three conserved lysines of Syrian hamster HMG-CoA reductase were mutated to alanine. All three mutant enzymes had reduced but detectable activity. Of the three conserved lysines, sequence alignments implicate lysine 734 of the hamster enzyme as the most likely cognate of P. mevalonii lysine 267. Low activity of enzyme K734A did not reflect an altered structure. Substrate recognition was essentially normal, and both circular dichroism spectroscopy and analytical ultracentrifugation implied a native structure. Enzyme K734A also formed an active heterodimer when coexpressed with inactive mutant enzyme D766N. We infer that a lysine is indeed essential for catalysis by the Class I HMG-CoA reductases and that the revised mechanism for catalysis is general for all HMG-CoA reductases.  相似文献   

13.
A procedure for reconstitution of the transport function of the vacuolar H(+)-translocating inorganic pyrophosphatase (H(+)-PPase; EC 3.6.1.1) prepared from etiolated hypocotyls of Vigna radiata (mung bean) is described. The method entails sequential extraction of isolated vacuolar membrane (tonoplast) vesicles with deoxycholate and CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate), combination of CHAPS-solubilized protein with phospholipid-cholesterol mixtures, dialysis, and glycerol density gradient centrifugation. The final proteoliposome preparation is 9-fold enriched for PPase activity and active in pyrophosphate (PPi)-energized electrogenic H(+)-translocation. Since both PPi hydrolysis and PPi-dependent H(+)-translocation by the proteoliposomes are indistinguishable from the corresponding activities of native tonoplast vesicles, the functional integrity of the H(+)-PPase appears to be conserved during solubilization and reconstitution. The high transport capacity and amenability of the reconstituted enzyme to both radiometric membrane filtration and fluorimetric H(+)-translocation assays, on the other hand, demonstrate its applicability to a broad range of transport studies. SDS-polyacrylamide gel electrophoresis of the proteoliposomes reveals selective enrichment of the M(r) 66,000, substrate-binding subunit of the H(+)-PPase and two additional polypeptides of M(r) 21,000 and 20,000. Although the M(r) 21,000 and 20,000 polypeptides have not been described previously, all attempts to reconstitute H(+)-PPase lacking these components were unsuccessful. It is therefore tentatively proposed that the M(r) 21,000 and 20,000 polypeptides, as well as the M(r) 66,000 subunit, are required for the productive reconstitution of PPi-dependent H(+)-translocation.  相似文献   

14.
Porphobilinogen synthase (PBGS) is a homo-octameric protein that catalyzes the complex asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). The only characterized intermediate in the PBGS-catalyzed reaction is a Schiff base that forms between the first ALA that binds and a conserved lysine, which in Escherichia coli PBGS is Lys-246 and in human PBGS is Lys-252. In this study, E. coli PBGS mutants K246H, K246M, K246W, K246N, and K246G and human PBGS mutant K252G were characterized. Alterations to this lysine result in a disabled but not totally inactive protein suggesting an alternate mechanism in which proximity and orientation are major catalytic devices. (13)C NMR studies of [3,5-(13)C]porphobilinogen bound at the active sites of the E. coli PBGS and the mutants show only minor chemical shift differences, i.e. environmental alterations. Mammalian PBGS is established to have four functional active sites, whereas the crystal structure of E. coli PBGS shows eight spatially distinct and structurally equivalent subunits. Biochemical data for E. coli PBGS have been interpreted to support both four and eight active sites. A unifying hypothesis is that formation of the Schiff base between this lysine and ALA triggers a conformational change that results in asymmetry. Product binding studies with wild-type E. coli PBGS and K246G demonstrate that both bind porphobilinogen at four per octamer although the latter cannot form the Schiff base from substrate. Thus, formation of the lysine to ALA Schiff base is not required to initiate the asymmetry that results in half-site reactivity.  相似文献   

15.
The H+-translocating pyrophosphatase (H+-PPase) is a proton pump that is found in a wide variety of organisms. It consists of a single polypeptide chain that is thought to possess between 14 and 17 transmembrane domains. To determine the topological arrangement of its conserved motifs and transmembrane domains, we carried out a cysteine-scanning analysis by determining the membrane topology of cysteine substitution mutants of Streptomyces coelicolor H+-PPase expressed in Escherichia coli using chemical reagents. First, we prepared a synthetic DNA that encoded the enzyme and constructed a functional cysteine-less mutant by substituting the four cysteine residues. We then introduced cysteine residues individually into 42 sites in its hydrophilic regions and N- and C-terminal segments. Thirty-six of the mutant enzymes retained both pyrophosphatase and H+-translocating activities. Analysis of 29 of these mutant forms using membrane-permeable and -impermeable sulfhydryl reagents revealed that S. coelicolor H+-PPase contains 17 transmembrane domains and that several conserved segments, such as the substrate-binding domains, are exposed to the cytoplasm. Four essential serine residues that were located on the cytoplasmic side were also identified. A marked characteristic of the S. coelicolor enzyme is a long additional sequence that includes a transmembrane domain at the C terminus. We propose that the basic structure of H+-PPases has 16 transmembrane domains with several large cytoplasmic loops containing functional motifs.  相似文献   

16.
An increasing number of proteins are being shown to have an N(zeta)-carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in these proteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-1 beta-lactamases and the sensor domain of BlaR signal-transducer protein serve in proton transfer events required for the functions of these proteins. These examples demonstrate the utility of this unusual amino acid in acid-base chemistry, in expansion of function beyond those of the 20 standard amino acids. In this study, the ONIOM quantum-mechanical/molecular-mechanical (QM/MM) method is used to study the carboxylation of lysine in the OXA-10 beta-lactamase. Lys-70 and the active site of the OXA-10 beta-lactamase were treated with B3LYP/6-31G(d,p) density functional calculations and the remainder of the enzyme with the AMBER molecular mechanics force field. The barriers for unassisted carboxylation of neutral lysine by carbon dioxide or bicarbonate are high. However, when the reaction with CO2 is catalyzed by a molecule of water in the active site, it is exothermic by about 13 kcal/mol, with a barrier of approximately 14 kcal/mol. The calculations show that the carboxylation and decarboxylation of Lys-70 are likely to be accompanied by deprotonation and protonation of the carbamate, respectively. The analysis may also be relevant for other proteins with carboxylated lysines, a feature that may be more common in nature than previously appreciated.  相似文献   

17.
Previous work with membrane vesicles has demonstrated an absolute dependence on K+ for proton translocation by the inorganic pyrophosphatase (H(+)-PPase: EC 3.6.1.1) from the vacuolar membrane (tonoplast) of higher plants. Using intact vacuoles from sugar beet (Beta vulgaris) storage tissue, we have monitored PP1-dependent currents by patch clamp in 'whole vacuole' mode. Serial K+ substitutions were made at both tonoplast faces. The results show that K+ activation occurs only at the cytosolic face.  相似文献   

18.
The aldolase catalytic cycle consists of a number of proton transfers that interconvert covalent enzyme intermediates. Glu-187 is a conserved amino acid that is located in the mammalian fructose-1,6-bisphosphate aldolase active site. Its central location, within hydrogen bonding distance of three other conserved active site residues: Lys-146, Glu-189, and Schiff base-forming Lys-229, makes it an ideal candidate for mediating proton transfers. Point mutations, Glu-187--> Gln, Ala, which would inhibit proton transfers significantly, compromise activity. Trapping of enzymatic intermediates in Glu-187 mutants defines a proton transfer role for Glu-187 in substrate cleavage and Schiff base formation. Structural data show that loss of Glu-187 negative charge results in hydrogen bond formation between Lys-146 and Lys-229 consistent with a basic pK(a) for Lys-229 in native enzyme and supporting nucleophilic activation of Lys-229 by Glu-187 during Schiff base formation. The crystal structures also substantiate Glu-187 and Glu-189 as present in ionized form in native enzyme, compatible with their role of catalyzing proton exchange with solvent as indicated from solvent isotope effects. The proton exchange mechanism ensures Glu-187 basicity throughout the catalytic cycle requisite for mediating proton transfer and electrostatic stabilization of ketamine intermediates. Glutamate general base catalysis is a recurrent evolutionary feature of Schiff base0forming aldolases.  相似文献   

19.
In this work, we show the kinetics of pyrophosphate-driven H+ uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K+ and PPi. H+ was released with the addition of Ca2+, suggesting the presence of a Ca2+/H+ antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H+-pyrophosphatase with characteristics of type I V-H+-PPase. However, we did not find any evidence, either for the presence of H+-ATPases or for Na+/H+ exchangers in these acidocalcisomes.  相似文献   

20.
The OST48 subunit of the oligosaccharyltransferase complex is a type I membrane protein containing three lysines in its cytosolic domain. The two lysines in positions 3 and 5 from the C-terminus are able to direct protein localisation within the endoplasmic reticulum (ER) by COPI-mediated retrieval. Substitution of these lysines by arginine resulted in cell-surface expression of OST48, whereas ER residency was maintained when either Lys-5 or Lys-3 but not both was replaced with arginine. Localisation of OST48 was not affected by substitution of the two lysines by histidine, indicating that a His-Xaa-His sequence, in contrast to Arg-Xaa-Arg, contains ER-specific targeting information. These differences show that simple charge interactions are not sufficient for ER retention and that other structural factors also play a role. The His-Xaa-His sequence could represent a new and independent signal for directing ER localisation differing from both the arginine motif in type II proteins and the lysine motif in type I proteins. Our data do not exclude, however, that the histidine sequence simply mimics the lysine motif as a sorting signal, being recognised by and interacting with the same receptor subunit(s) in COP-I-coated vesicles. Conclusions arising from this assumption involving the conformation of lysine at the putative COP-I binding site and the failure of Arg-Xaa-Arg to mediate ER localisation for type I proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号