首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some scientific modelers suggest that complex simulation models that mimic biological processes should have a limited place in ecological and evolutionary studies. However, complex simulation models can have a role that is different from that of simpler models that are designed to be fit to data. Simulation can be viewed as another kind of experimental system and should be analyzed as such. Here, I argue that current discussions in the philosophy of science and in the physical sciences fields about the use of simulation as an experimental system have important implications for biology, especially complex sciences such as evolution and ecology. Simulation models can be used to mimic complex systems, but unlike nature, can be manipulated in ways that would be impossible, too costly or unethical to do in natural systems. Simulation can add to theory development and testing, can offer hypotheses about the way the world works and can give guidance as to which data are most important to gather experimentally.  相似文献   

2.
3.
Adaptive noise     
In biology, noise implies error and disorder and is therefore something which organisms may seek to minimize and mitigate against. We argue that such noise can be adaptive. Recent studies have shown that gene expression can be noisy, noise can be genetically controlled, genes and gene networks vary in how noisy they are and noise generates phenotypic differences among genetically identical cells. Such phenotypic differences can have fitness benefits, suggesting that evolution can shape noise and that noise may be adaptive. For example, gene networks can generate bistable states resulting in phenotypic diversity and switching among individual cells of a genotype, which may be a bet hedging strategy. Here, we review the sources of noise in gene expression, the extent to which noise in biological systems may be adaptive and suggest that applying evolutionary rigour to the study of noise is necessary to fully understand organismal phenotypes.  相似文献   

4.
This paper considers a variety of attempts to define fitness in such a way as to defend the theory of evolution by natural selection from the criticism that it is a circular argument. Each of the definitions is shown to be inconsistent with the others. The paper argues that the environment in which an animal evolves can be defined only with respect to the properties of the phenotype of the animal and that it is therefore not illuminating to try to explain the phenotypic properties of the animal in terms of adaptation to an environment that is defined by those very properties. Furthermore, since there is no way that the environment can be defined independently of the presence of the animal there is no way that the quality of an animal can be assessed; and there can be no objective criteria by whichany form of selection can be carried out, therefore there can be no criteria by whichnatural selection can be carried out. It is proposed that fitness is nothing more than the production of offspring, that this is a phenotypic property like all the others, and if it is heritable then the offspring of the parents that produce the most offspring will themselves produce the most offspring, and that in principle it is impossible to account for this in terms of the other phenotypic properties of the fittest animals except by circular argument. Differential rates of reproduction are the causes of evolution and the phenotypic causes are strictly inexplicable.  相似文献   

5.
Persson I 《Bioethics》1999,13(3-4):294-305
Peter Singer has argued that nothing done to a fetus before it acquires consciousness can harm it. At the same time, he concedes that a child can be harmed by something done to it when it was a non-conscious fetus. But this implies that the non-conscious fetus can be harmed. The mistake lies in thinking that, since existence can be intrinsically bad for a being only if it is conscious, it can be harmed only if it is conscious. In fact, its being harmed only implies that it could have been conscious (and led a good life).  相似文献   

6.
Most ecosystems are recipients of allochthonous materials that enhance in situ productivity. Recent theoretical and empirical studies suggest that low to moderate inputs can stabilize food webs. However, depending on the trophic levels that use the resource, food webs can become unstable as inputs increase. Where large amounts of agricultural resources are transferred to natural habitats, trophic dynamics change: trophic cascades can occur and rare or uncommon species can become invasive. Rates of change in species abundances can also be amplified by the effects of changes in legislation and management practices on subsidized consumers.  相似文献   

7.
Gene expression signatures can predict the activation of oncogenic pathways and other phenotypes of interest via quantitative models that combine the expression levels of multiple genes. However, as the number of platforms to measure genome-wide gene expression proliferates, there is an increasing need to develop models that can be ported across diverse platforms. Because of the range of technologies that measure gene expression, the resulting signal values can vary greatly. To understand how this variation can affect the prediction of gene expression signatures, we have investigated the ability of gene expression signatures to predict pathway activation across Affymetrix and Illumina microarrays. We hybridized the same RNA samples to both platforms and compared the resultant gene expression readings, as well as the signature predictions. Using a new approach to map probes across platforms, we found that the genes in the signatures from the two platforms were highly similar, and that the predictions they generated were also strongly correlated. This demonstrates that our method can map probes from Affymetrix and Illumina microarrays, and that this mapping can be used to predict gene expression signatures across platforms.  相似文献   

8.
It is now appreciated that condition-relevant information can be present within distributed patterns of functional magnetic resonance imaging (fMRI) brain activity, even for conditions with similar levels of univariate activation. Multi-voxel pattern (MVP) analysis has been used to decode this information with great success. FMRI investigators also often seek to understand how brain regions interact in interconnected networks, and use functional connectivity (FC) to identify regions that have correlated responses over time. Just as univariate analyses can be insensitive to information in MVPs, FC may not fully characterize the brain networks that process conditions with characteristic MVP signatures. The method described here, informational connectivity (IC), can identify regions with correlated changes in MVP-discriminability across time, revealing connectivity that is not accessible to FC. The method can be exploratory, using searchlights to identify seed-connected areas, or planned, between pre-selected regions-of-interest. The results can elucidate networks of regions that process MVP-related conditions, can breakdown MVPA searchlight maps into separate networks, or can be compared across tasks and patient groups.  相似文献   

9.
Many species delay development unless particular environments or rare disturbance events occur. How can such a strategy be favoured over continued development? Typically, it is assumed that continued development (e.g. germination) is not advantageous in environments that have low juvenile/seedling survival (mechanism 1), either due to abiotic or competitive effects. However, it has not previously been shown how low early survival must be in order to favour environment‐specific developmental delays for long‐lived species. Using seed dormancy as an example of developmental delays, we identify a threshold level of seedling survival in ‘bad’ environments below which selection can favour germination that is limited to ‘good’ environments. This can be used to evaluate whether observed differences in seedling survival are sufficient to favour conditional germination. We also present mathematical models that demonstrate two other, often overlooked, mechanisms that can favour conditional germination in the absence of differences in seedling survival. Specifically, physiological trade‐offs can make it difficult to have germination rates that are equally high in all environments (mechanism 2). We show that such trade‐offs can either favour conditional germination or intermediate (mixed) strategies, depending on the trade‐off shape. Finally, germination in every year increases the likelihood that some individuals are killed in population‐scale disturbances before reproducing; it can thus be favourable to only germinate immediately after a disturbance (mechanism 3). We demonstrate how demographic data can be used to evaluate these selection pressures. By presenting these three mechanisms and the conditions that favour conditional germination in each case, we provide three hypotheses that can be tested as explanations for the evolution of environment‐dependent developmental delays.  相似文献   

10.
Past research on parasites and community ecology has focussed on two distinct levels of the overall community. First, it has been shown that parasites can have a role in structuring host communities. They can have differential effects on the different hosts that they exploit, they can directly debilitate a host that itself is a key structuring force in the community, or they can indirectly alter the phenotype of their host and change the importance of the host for the community. Second, certain parasite species can be important in shaping parasite communities. Dominant parasite species can directly compete with other parasite species inside the host and reduce their abundance to some extent, and parasites that alter host phenotype can indirectly make the host more or less suitable for other parasite species. The possibility that a parasite species simultaneously affects the structure of all levels of the overall community, i.e. the parasite community and the community of free-living animals, is never considered. Given the many direct and indirect ways in which a parasite species can modulate the abundance of other species, it is conceivable that some parasite species have functionally important roles in a community, and that their removal would change the relative composition of the whole community. An example from a soft-sediment intertidal community is used to illustrate how the subtle, indirect effects of a parasite species on non-host species can be very important to the structure of the overall community. Future community studies addressing the many potential influences of parasites will no doubt identify other functionally important parasite species that serve to maintain biodiversity.  相似文献   

11.
The number of plant and animal species that exist today is estimated to be around 8.7 million. Approximately 300,000 of these species are flora. This extremely high species diversity has been puzzling scientist since the beginning of ecological research because most of these species compete for limited resources that should lead to the exclusion of all but few superior species. This can be seen in a number of coexistence model today that can only maintain at most four species at a time. We have shown recently that by incorporating minute differences in microhabitat to a lattice competition model, about 13 species can coexist from an initial number of 20. Here, we improve the model further by considering that microhabitat differences are not fixed but can change over time which can affect coexistence. A primary driver to this alteration is climate change, both natural and human induced. To show the resistance of a lattice plant community model, a dynamic microhabitat locality is incorporated by changing the spatial and species‐specific heterogeneity of each lattice site. We show that even if the microhabitat locality of each plant species is dynamic, diversity can still be maintained in a lattice plant ecosystem model. This shows that natural communities of terrestrial plants can be resistant to the stress of microhabitat locality changes to a certain extent.  相似文献   

12.
Therapeutic proteins are derived from complex expression/production systems, which can result in minor conformational changes due to preferential codon usage in different organisms, post-translational modifications, etc. Subtle conformational differences are often undetectable by bioanalytical methods but can sometimes profoundly impact the safety, efficacy and stability of products. Numerous bioanalytical methods exist to characterize the primary structure of proteins, post translational modifications; protein-substrate/protein/protein interactions and functional bioassays are available for most proteins that are developed as products. There are however few analytical techniques to detect changes in the tertiary structure of proteins suitable for use during drug development and quality control. For example, x-ray crystallography and NMR are impractical for routine use and do not capture the heterogeneity of the product. Conformation-sensitive antibodies can be used to map proteins. However the development of antibodies to represent sufficient epitopes can be challenging. Other limitations of antibodies include limited supply, high costs, heterogeneity and batch to batch variations in titer. Here we provide proof-of-principle that DNA aptamers to thrombin can be used as surrogate antibodies to characterize conformational changes. We show that aptamers can be used in assays using either an ELISA or a label-free platform to characterize different thrombin products. In addition we replicated a heat-treatment procedure that has previously been shown to not affect protein activity but can result in conformational changes that have serious adverse consequences. We demonstrate that a panel of aptamers (but not an antibody) can detect changes in the proteins even when specific activity is unaffected. Our results indicate a novel approach to monitor even small changes in the conformation of proteins which can be used in a routine drug-development and quality control setting. The technique can provide an early warning of structural changes during the manufacturing process that could have consequential outcomes downstream.  相似文献   

13.
The introduction and persistence of novel, sexually antagonistic alleles can depend upon factors that differ between males and females. Understanding the conditions for invasion in a two‐locus model can elucidate these processes. For instance, selection can act differently upon the sexes, or sex linkage can facilitate the invasion of genetic variation with opposing fitness effects between the sexes. Two factors that deserve further attention are recombination rates and allele frequencies – both of which can vary substantially between the sexes. We find that sex‐specific recombination rates in a two‐locus diploid model can affect the invasion outcome of sexually antagonistic alleles and that the sex‐averaged recombination rate is not necessarily sufficient to predict invasion. We confirm that the range of permissible recombination rates is smaller in the sex benefitting from invasion and larger in the sex harmed by invasion. However, within the invasion space, male recombination rate can be greater than, equal to or less than female recombination rate in order for a male‐benefit, female‐detriment allele to invade (and similarly for a female‐benefit, male‐detriment allele). We further show that a novel, sexually antagonistic allele that is also associated with a lowered recombination rate can invade more easily when present in the double heterozygote genotype. Finally, we find that sexual dimorphism in resident allele frequencies can impact the invasion of new sexually antagonistic alleles at a second locus. Our results suggest that accounting for sex‐specific recombination rates and allele frequencies can determine the difference between invasion and non‐invasion of novel, sexually antagonistic alleles in a two‐locus model.  相似文献   

14.
Protection against fungal pathogens can theoretically be elicited by vaccines that stimulate humoral or cellular immunity, or both. There is conclusive evidence that humoral immunity can modify the course of infection against certain pathogenic fungi such as Candida albicans and Cryptococcus neoformans. However, for other fungi, such as Aspergillus fumigatus, the notion that humoral immunity contributes to host defence is unproven. Attempts to evaluate the potential efficacy of humoral immunity using immune sera are often inconclusive, whereas consistent results can be obtained with monoclonal antibodies. Protective monoclonal antibodies can be used to identify antigens that induce useful humoral responses.  相似文献   

15.
The extracellular signal-regulated kinase (ERK) controls cellular processes by phosphorylating multiple substrates. The ERK protein can use the same domains to interact with phosphatases, which dephosphorylate and deactivate ERK, and with substrates, which connect ERK to its downstream effects. As a consequence, substrates can compete with phosphatases and control the level of ERK phosphorylation. We propose that this effect can qualitatively change the dynamics of a network that controls ERK activation. On its own, this network can be bistable, but in a larger system, where ERK accelerates the degradation of a substrate competing with a phosphatase, this network can oscillate. Previous studies proposed that oscillatory ERK signaling requires a negative feedback in which active ERK reduces the rate at which it is phosphorylated by upstream kinase. We argue that oscillations can also emerge even when this rate is constant, due to substrate-dependent control of ERK phosphorylation.  相似文献   

16.
Shotgun antisense is a technique to make a random set of mutant cells or organisms in such a way that one can select an interesting mutant and then sequence part of the mutated gene within a day. In addition to the fantastic rapidity with which one can identify the mutated gene, there are more advantages of this technique over other mutagenesis techniques: (1) one can identify genes that when completely repressed are lethal; (2) one can select which sets of genes will be mutated; and (3) genes that are expressed from multiple copies can be repressed and thus identified.  相似文献   

17.
It has been shown that psychological predispositions to benefit others can motivate human cooperation and the evolution of such social preferences can be explained with kin or multi-level selection models. It has also been shown that cooperation can evolve as a costly signal of an unobservable quality that makes a person more attractive with regard to other types of social interactions. Here we show that if a proportion of individuals with social preferences is maintained in the population through kin or multi-level selection, cooperative acts that are truly altruistic can be a costly signal of social preferences and make altruistic individuals more trustworthy interaction partners in social exchange. In a computerized laboratory experiment, we test whether altruistic behavior in the form of charitable giving is indeed correlated with trustworthiness and whether a charitable donation increases the observing agents' trust in the donor. Our results support these hypotheses and show that, apart from trust, responses to altruistic acts can have a rewarding or outcome-equalizing purpose. Our findings corroborate that the signaling benefits of altruistic acts that accrue in social exchange can ease the conditions for the evolution of social preferences.  相似文献   

18.
19.
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet.  相似文献   

20.
It is now recognized that the denatured state ensemble (DSE) of proteins can contain significant amounts of structure, particularly under native conditions. Well-studied examples include small units of hydrogen bonded secondary structure, particularly helices or turns as well as hydrophobic clusters. Other types of interactions are less well characterized and it has often been assumed that electrostatic interactions play at most a minor role in the DSE. However, recent studies have shown that both favorable and unfavorable electrostatic interactions can be formed in the DSE. These can include surprisingly specific non-native interactions that can even persist in the transition state for protein folding. DSE electrostatic interactions can be energetically significant and their modulation either by mutation or by varying solution conditions can have a major impact upon protein stability. pH dependent stability studies have shown that electrostatic interactions can contribute up to 4 kcal mol-1 to the stability of the DSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号