首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CD3epsilon proline-rich sequence (PRS) binds to the cytosolic adaptor molecule Nck after TCR ligation. It has been proposed that this interaction is essential for immunological synapse formation and T cell activation. To assess the physiological importance of the CD3epsilon PRS, we have generated mice that lack this motif (CD3epsilon.PRS(M)). Pull-down experiments demonstrated the inability of Nck to bind to the CD3epsilon PRS in thymocytes from mutant mice after TCR ligation. Surprisingly, no differences were observed in the number and percentage of T cell subsets in the thymus and spleen, and there was no apparent defect in positive or negative selection. Furthermore, the proliferative response of CD3epsilon.PRS(M) T cells to staphylococcal enterotoxin B and anti-CD3 Ab was normal. TCR surface expression, constitutive internalization, and Ag-induced down-modulation were also normal. These data suggest that the interaction between the CD3epsilon PRS and Nck, or any other Src homology 3 domain-containing molecule, is not essential for T cell development and function.  相似文献   

2.
High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity.  相似文献   

3.
The current model of T cell activation is that TCR engagement stimulates Src family tyrosine kinases (SFK) to phosphorylate CD3zeta. CD3zeta phosphorylation allows for the recruitment of the tyrosine kinase ZAP70, which is phosphorylated and activated by SFK, leading to the phosphorylation of downstream targets. We stimulated mouse CTLs with plate-bound anti-CD3 and, after cell lysis, recovered proteins that associated with the CD3 complex. The protein complexes were not preformed, and a number of tyrosine-phosphorylated proteins were inducibly and specifically associated with the TCR/CD3 complex. These results suggest that complex formation only occurs at the site of TCR engagement. The recruitment and tyrosine phosphorylation of most proteins were abolished when T cells were stimulated in the presence of the SFK inhibitor PP2. Surprisingly, CD3zeta, but not CD3epsilon, was inducibly tyrosine phosphorylated in the presence of PP2. Furthermore, ZAP70 was recruited, but not phosphorylated, after TCR stimulation in the presence of PP2, thus confirming the phosphorylation status of CD3zeta. These data suggest that there is a differential requirement for SFK activity in phosphorylation of CD3zeta vs CD3epsilon. Consistent with this possibility, ZAP70 recruitment was also detected with anti-CD3-stimulated, Lck-deficient human Jurkat T cells. We conclude that TCR/CD3-induced CD3zeta phosphorylation and ZAP70 recruitment do not absolutely require Lck or other PP2-inhibitable SFK activity, but that SFK activity is absolutely required for CD3epsilon and ZAP70 phosphorylation. These data reveal the potential for regulation of signaling through the TCR complex by the differential recruitment or activation of SFK.  相似文献   

4.
We have examined the ability of the CD3-gamma delta epsilon and CD3-zeta signaling modules of the T cell receptor (TCR) to couple CD38 to intracellular signaling pathways. The results demonstrated that in TCR+ T cells that express the whole set of CD3 subunits CD38 ligation led to complete tyrosine phosphorylation of both CD3-zeta and CD3-epsilon polypeptide chains. In contrast, in TCR+ cells with a defective CD3-zeta association CD38 engagement caused tyrosine phosphorylation of CD3-epsilon but not of CD3-zeta. Despite these differences, in both cell types CD38 ligation resulted in protein-tyrosine kinase and mitogen-activated protein kinase activation. However, in cells expressing chimerical CD25-zeta or CD25-epsilon receptors or in a TCR-beta- Jurkat T cell line, CD38 ligation did not result in tyrosine phosphorylation of the chimeric receptors, or CD3 subunits, or protein-tyrosine kinase or mitogen-activated protein kinase activation. In summary, these results support a model in which CD38 transduces activating signals inside the cell by means of CD3-epsilon and CD3-zeta tyrosine phosphorylation. Moreover, these data identify the CD3-gamma delta epsilon signaling module as a necessary and sufficient component of the TCR/CD3 complex involved in T cell activation through CD38.  相似文献   

5.
Both CD8 and the TCR bind to MHC class I molecules during physiologic T cell activation. It has been shown that for optimal T cell activation to occur, CD8 must be able to bind the same class I molecule that is bound by the TCR. However, no direct evidence for the class I-dependent association of CD8 and the TCR has been demonstrated. Using fluorescence resonance energy transfer, we show directly that a single class I molecule causes TCR/CD8 interaction by serving as a docking molecule for both CD8 and the TCR. Furthermore, we show that CD3epsilon is brought into close proximity with CD8 upon TCR/CD8 association. These interactions are not dependent on the phosphorylation events characteristic of T cell activation. Thus, MHC class I molecules, by binding to both CD8 and the TCR, mediate the reorganization of T cell membrane components to promote cellular activation.  相似文献   

6.
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+) CD57(+) CD7(-) phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+) T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.  相似文献   

7.
Expression of the T‐cell receptor (TCR):CD3 complex is tightly regulated during T‐cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3ε proline‐rich sequence, Lck, c‐Cbl, and SLAP, which collectively trigger the dynamin‐dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3ζ‐monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T‐cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T‐cell development.  相似文献   

8.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

9.
Antigen recognition through T cell receptor (TCR)-CD3 complex transduces signals into T cells, which regulate activation, function, and differentiation of T cells. The TCR-CD3 complex is composed of two signaling modules represented by CD3zeta and CD3epsilon. Signaling through CD3zeta has been extensively analyzed, but that via CD3epsilon, which is also crucial in immature thymocyte development, is still not clearly understood. We isolated cDNA encoding a novel CD3epsilon-binding protein CAST. CAST specifically interacts in vivo and in vitro with CD3epsilon but not with CD3zeta or FcRgamma via a unique membrane-proximal region of CD3epsilon. CAST is composed of 512 amino acids including a single tyrosine and undergoes tyrosine phosphorylation upon TCR stimulation. Overexpression of two dominant-negative types of CAST, a minimum CD3epsilon-binding domain and a tyrosine-mutant, strongly suppressed NFAT activation and interleukin-2 production. These results demonstrate that CAST serves as a component of preformed TCR complex and transduces activation signals upon TCR stimulation and represents a new signaling pathway via the CD3epsilon-containing TCR signaling module.  相似文献   

10.
In a T cell antigen receptor complex (TCR), the clonotypic disulfide-linked Ti heterodimer is noncovalently associated with the invariant CD3 polypeptides. The latter are composed of three monomeric subunits (gamma, delta, epsilon) and either a disulfide-linked homodimer (zeta zeta) or a disulfide-linked heterodimer (zeta eta). The exact stoichiometry of the Ti-CD3 subunits in a given complex is still largely unknown. Here, we report the presence of a CD3 epsilon dimer in a fraction of the TCR. When TCRs from both human and murine T lymphocytes were immunoprecipitated with monoclonal antibodies against either CD3 epsilon or Ti, a 40-kDa disulfide-linked dimer was coprecipitated with the other TCR subunits from digitonin lysates. Amino acid sequence analysis of peptides obtained by in situ CNBr cleavage of the 20-kDa product blotted to polyvinyl difluoride membranes from reducing/nonreducing two-dimensional gels identified human CD3 epsilon. Assuming this CD3 epsilon to derive from a homodimer, then either some TCRs contain more than one CD3 epsilon chain or several TCRs are covalently associated with one another via their CD3 epsilon subunits. Although it has been suggested that a putative TCR association with CD2 exists under similar conditions to those utilized to detect CD3 epsilon dimers, the CD2 molecule was not coimmunoprecipitated with the TCR by any of a series of anti-CD3 epsilon monoclonal antibodies. In conjunction with the fact that CD2 and the TCR do not colocalize during conjugate formation between T cells and antigen-presenting cells (Koyasu, S., Lawton, T., Novick, D., Recny, M. A., Siliciano, R. F., Wallner, B. P., and Reinherz, E. L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 2603-2607), we conclude that CD2 and the TCR are not physically associated on the T cell surface.  相似文献   

11.
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3, LFA-1, and signaling molecules. However, the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study, we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL, but not resting T cells, colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse, which is formed by LFA-1, CD3, and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent, but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse, and facilitates efficient and rapid activation of CTL.  相似文献   

12.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

13.
Expressed in mast and T-cells/inducible T cell tyrosine kinase (Emt/Itk) is a protein tyrosine kinase required for T cell Ag receptor (TCR)-induced activation and development. A physical interaction between Emt/Itk and TCR has not been described previously. Here, we have utilized laser scanning confocal microscopy to demonstrate that Ab-mediated engagement of the CD3epsilon chain induces the membrane colocalization of Emt/Itk with TCR/CD3. Removal of the Emt/Itk pleckstrin homology domain (DeltaPH-Emt/Itk) abrogates the association of the kinase with the cell membrane, as well as its activation-induced colocalization with the TCR complex and subsequent tyrosine phosphorylation. The addition of a membrane localization sequence to DeltaPH-Emt/Itk from Lck restores all of these deficiencies except the activation-induced tyrosine phosphorylation. Our data suggest that the PH domain of Emt/Itk can be replaced with another membrane localization signal without affecting the membrane targeting and activation-induced colocalization of the kinase with the TCR. However, the PH domain is indispensable for the activation-induced tyrosine phosphorylation of the kinase.  相似文献   

14.
T cell activation is associated with a dramatic reorganization of cell surface proteins and associated signaling components into discrete subdomains within the immunological synapse in T cell:APC conjugates. However, the signals that direct the localization of these proteins and the functional significance of this organization have not been established. In this study, we have used wild-type and LFA-1-deficient, DO11.10 TCR transgenic T cells to examine the role of LFA-1 in the formation of the immunological synapse. We found that coengagement of LFA-1 is not required for the formation of the central supramolecular activation cluster (cSMAC) region, but does increase the accumulation of TCR/class II complexes within the cSMAC. In addition, LFA-1 is required for the recruitment and localization of talin into the peripheral supramolecular activation cluster region and exclusion of CD45 from the synapse. The ability of LFA-1 to increase the amount of TCR engaged during synapse formation and segregate the phosphatase, CD45, from the synapse suggests that LFA-1 might enhance proximal TCR signaling. To test this, we combined flow cytometry-based cell adhesion and calcium-signaling assays and found that coengagement of LFA-1 significantly increased the magnitude of the intracellular calcium response following Ag presentation. These data support the idea that in addition to its important role on regulating T cell:APC adhesion, coengagement of LFA-1 can enhance T cell signaling, and suggest that this may be accomplished in part through the organization of proteins within the immunological synapse.  相似文献   

15.
16.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

17.
How membrane receptors initiate signal transduction upon ligand binding is a matter of intense scrutiny. The T cell receptor complex (TCR-CD3) is composed of TCR alpha/beta ligand binding subunits bound to the CD3 subunits responsible for signal transduction. Although it has long been speculated that TCR-CD3 may undergo a conformational change, confirmation is still lacking. We present strong evidence that ligand engagement of TCR-CD3 induces a conformational change that exposes a proline-rich sequence in CD3 epsilon and results in recruitment of the adaptor protein Nck. This occurs earlier than and independently of tyrosine kinase activation. Finally, by interfering with Nck-CD3 epsilon association in vivo, we demonstrate that TCR-CD3 recruitment of Nck is critical for maturation of the immune synapse and for T cell activation.  相似文献   

18.
The antigen T cell receptor (TCR)-CD3 complexes present on the cell surface of CD4(+) T lymphocytes and T cell lines express CD3 epsilon chain isoforms with different isoelectric points (pI), with important structural and functional consequences. The pI values of the isoforms fit the predicted pI values of CD3 epsilon chains lacking one, two, and three negatively charged amino acid residues present in the N-terminal region. Different T cells have different ratios of CD3 epsilon chain isoforms. At a high pI, degraded CD3 epsilon isoforms can be better recognized by certain anti-CD3 monoclonal antibodies such as YCD3-1, the ability of which to bind to the TCR-CD3 complex is directly correlated with the pI of CD3 epsilon. The abundance of CD3 epsilon isoforms can be modified by treatment of T cells with the proteinase inhibitor phenanthroline. In addition, these CD3 epsilon isoforms have functional importance. This is shown, first, by the different structure of TCR-CD3 complexes in cells possessing different amounts of isoforms (as observed in surface biotinylation experiments), by their different antigen responses, and by the stronger interaction between low pI CD3 epsilon isoforms and the TCR. Second, incubation of cells with phenanthroline diminished the proportion of degraded high pI CD3 epsilon isoforms, but also the ability of the cells to deliver early TCR activation signals. Third, cells expressing mutant CD3 epsilon chains lacking N-terminal acid residues showed facilitated recognition by antibody YCD3-1 and enhanced TCR-mediated activation. Furthermore, the binding avidity of antibody YCD3-1 was different in distinct thymus populations. These results suggest that changes in CD3 epsilon N-terminal chains might help to fine-tune the response of the TCR to its ligands in distinct activation situations or in thymus selection.  相似文献   

19.
We have previously demonstrated that OCILRP2 interaction with its ligand NKRP1f provides a co-stimulatory signal for optimal T cell proliferation and IL-2 production. Here, using RNA interference technology, we will demonstrate that silencing OCILRP2 in vivo leads to intrinsic impairment in T cell response to CD3- and CD28-cross-linking as well as antigenic stimulation. OCILRP2-silenced T cells have reduced cell proliferation and IL-2 production, which can be bypassed by PMA and ionomycin treatment. OCILRP2-silenced T cells also failed to undergo TCR capping and had impaired cytoskeleton reorganization. Moreover, in OCILRP2-silenced T cells, tyrosine phosphorylation of Lck was diminished, while tyrosine phosphorylation of linkers for activation of T cells was unchanged. Interestingly, NF-kappaB activation was also impaired as the result of OCILRP2 silencing. Together, our data strongly support a novel role for OCILRP2 C-type lectin in TCR-mediated signal transduction. The observation that OCILRP2 is involved in TCR capping and cytoskeletal organization suggests that OCILRP2-NKRP1f may facilitate lipid rafts and immunological synapse formation during T cell interaction with antigen presenting cells.  相似文献   

20.
Cbl proteins have been implicated in ligand-induced TCR/CD3 down-modulation, but underlying mechanisms are unclear. We analyzed the effect of mutation of a cbl-binding site on ZAP-70 (ZAP-Y292F) on dynamics, internalization, and degradation of the TCR/CD3 complex in response to distinct stimuli. Naive CD8 T cells expressing the P14 transgenic TCR from ZAP-Y292F mice were selectively affected in TCR/CD3 down-modulation in response to antigenic stimulation, whereas neither anti-CD3 Ab-, and PMA-induced TCR down-modulation, nor constitutive receptor endocytosis/cycling were impaired. We further established that the defect in TCR/CD3 down-modulation in response to Ag was paralleled by an impaired TCR/CD3 internalization and CD3zeta degradation. Analysis of T/APC conjugates revealed that delayed redistribution of TCR at the T/APC contact zone was paralleled by a delay in TCR internalization in the synaptic zone in ZAP-Y292F compared with ZAP-wild-type T cells. Cbl recruitment to the synapse was also retarded in ZAP-Y292F T cells, although F-actin and LFA-1 redistribution was similar for both cell types. This study identifies a step involving ZAP-70/cbl interaction that is critical for rapid internalization of the TCR/CD3 complex at the CD8 T cell/APC synapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号