首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo.  相似文献   

5.
Fis, the most abundant DNA-binding protein in Escherichia coli during rapid growth, has been suspected to play an important role in defining nucleoid structure. Using bulk-phase and single-DNA molecule experiments, we analyze the structural consequences of non-specific binding by Fis to DNA. Fis binds DNA in a largely sequence-neutral fashion at nanomolar concentrations, resulting in mild compaction under applied force due to DNA bending. With increasing concentration, Fis first coats DNA to form an ordered array with one Fis dimer bound per 21 bp and then abruptly shifts to forming a higher-order Fis-DNA filament, referred to as a low-mobility complex (LMC). The LMC initially contains two Fis dimers per 21 bp of DNA, but additional Fis dimers assemble into the LMC as the concentration is increased further. These complexes, formed at or above 1 microM Fis, are able to collapse large DNA molecules via stabilization of DNA loops. The opening and closing of loops on single DNA molecules can be followed in real time as abrupt jumps in DNA extension. Formation of loop-stabilizing complexes is sensitive to high ionic strength, even under conditions where DNA bending-compaction is unaltered. Analyses of mutants indicate that Fis-mediated DNA looping does not involve tertiary or quaternary changes in the Fis dimer structure but that a number of surface-exposed residues located both within and outside the helix-turn-helix DNA-binding region are critical. These results suggest that Fis may play a role in vivo as a domain barrier element by organizing DNA loops within the E. coli chromosome.  相似文献   

6.
A genetic strategy to enhance recombinant protein production is discussed. A small DNA bending protein, Fis, which has been shown to activate rRNA synthesis upon a nutrient upshift, was overexpressed in E. coli strain W3110 carrying vector pUCR1. Overexpression of Fis during exponential growth was shown to activate rrn promoters to different extents. A 5-fold improvement in chloramphenicol acetyltransferase (CAT) production in cultures with elevated Fis level was observed in shake-flask cultivations. A similar improvement in the culture performance was also observed during fed-batch fermentation; the specific CAT activity increased by more than 50% during the fed-batch phase for cultures with elevated Fis expression. In contrast, no increase in specific CAT activity was detected for cultures carrying pUCR2, expressing a frame-shift Fis mutant. Expression of Fis from a complementary vector, pKFIS, restored CAT production from W3110:pUCR2 to approximately the same level as cultures carrying pUCR1, indicating that the enhancement in CAT production was indeed Fis-dependent. The framework presented here suggests that differential activation in recombinant protein production may be achieved with differential Fis overexpression. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 138-144, 1997.  相似文献   

7.
8.
The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.  相似文献   

9.
10.
Role of NAD in regulating the adhE gene of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fermentative alcohol dehydrogenase of Escherichia coli is encoded by the adhE gene, which is induced under anaerobic conditions but repressed in air. Previous work suggested that induction of adhE might depend on NADH levels. We therefore directly measured the NAD+ and NADH levels for cultures growing aerobically and anaerobically on a series of carbon sources whose metabolism generates different relative amounts of NADH. Expression of adhE was monitored both by assay of alcohol dehydrogenase activity and by expression of phi(adhE'-lacZ) gene fusions. The expression of the adhE gene correlated with the ratio of NADH to NAD+. The role of NADH in eliciting adhE induction was supported by a variety of treatments known to change the ratio of NADH to NAD+ or alter the total NAD+-plus-NADH pool. Blocking the electron transport chain, either by mutation or by chemical inhibitors, resulted in the artificial induction of the adhE gene under aerobic conditions. Conversely, limiting NAD synthesis, by introducing mutational blocks into the biosynthetic pathway for nicotinic acid, decreased the expression of adhE under anaerobic conditions. This, in turn, was reversed by supplementation with exogenous NAD or nicotinic acid. In merodiploid strains carrying deletion or insertion mutations abolishing the synthesis of AdhE protein, an adhE-lacZ fusion was expressed at nearly 10-fold the level observed in an adhE+ background. Introduction of mutant adhE alleles producing high levels of inactive AdhE protein gave results equivalent to those seen in absence of the AdhE protein. This finding implies that it is the buildup of NADH due to lack of enzyme activity, rather than the absence of the AdhE protein per se, which causes increased induction of the phi(adhE'-lacZ) fusion. Moreover, mutations giving elevated levels of active AdhE protein decreased the induction of the phi(adhE'-lacZ) fusion. This finding suggests that the enzymatic activity of the AdhE protein modulates the level of NADH under anaerobic conditions, thus indirectly regulating its own expression.  相似文献   

11.
12.
The proton-pumping NADH:ubiquinone oxidoreductase is the first of the respiratory chain complexes in many bacteria and the mitochondria of most eukaryotes. In general, the bacterial complex consists of 14 different subunits. In addition to the homologues of these subunits, the mitochondrial complex contains approximately 31 additional proteins. While it was shown that the mitochondrial complex is assembled from distinct intermediates, nothing is known about the assembly of the bacterial complex. We used Escherichia coli mutants, in which the nuo-genes coding the subunits of complex I were individually disrupted by an insertion of a resistance cartridge to determine whether they are required for the assembly of a functional complex I. No complex I-mediated enzyme activity was detectable in the mutant membranes and it was not possible to extract a structurally intact complex I from the mutant membranes. However, the subunits and the cofactors of the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of some of the nuo-mutants. It is discussed whether this fragment represents an assembly intermediate. In addition, a membrane-bound fragment exhibiting NADH/ferricyanide oxidoreductase activity and containing the iron-sulfur cluster N2 was detected in one mutant.  相似文献   

13.
14.
15.
The Escherichia coli protein Fis has been shown to bind a single site in the recombination region of phage lambda and to stimulate excisive recombination in vitro (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). We demonstrate that mutant strains deficient in fis expression show dramatically reduced rates of lambda excision in vivo. Phage yields after induction of a stable lysogen are reduced more than 200-fold in fis cells. The defect observed in phage yield is not due to inefficient phage replication or lytic growth. Direct examination of excisive recombination products reveals a severe defect in the rate of recombination in the absence of Fis. The excision defect observed in fis cells can be fully reproduced in fis+ cells by using phages that lack the Fis binding site on attR, indicating that the entire stimulatory effect of Fis on excisive recombination is due to binding at that site.  相似文献   

16.
17.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

18.
19.
20.
Following on from our previous discovery of Na+ pumping by the NADH:ubiquinone oxidoreductase (complex I) of Klebsiella pneumoniae, we show here that complex I from Escherichia coli is a Na+ pump as well. Our study object was the Escherichia coli mutant EP432, which lacks the Na+/H+ antiporter genes nhaA and nhaB and is therefore unable to grow on LB medium at elevated Na+ concentrations. During growth on mineral medium, the Na+ tolerance of E. coli EP432 was influenced by the organic substrate. NaCl up to 450 mM did not affect growth on glycerol and fumarate, but growth on glucose was inhibited. Correlated to the Na+ tolerance was an increased synthesis of complex I in the glycerol/fumarate medium. Inverted membrane vesicles catalysed respiratory Na+ uptake with NADH as electron donor. The sodium ion transport activity of vesicles from glycerol/fumarate-grown cells was 40 nmol mg-1 min-1 and was resistant to the uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), but was inhibited by the complex I-specific inhibitor rotenone. With an E. coli mutant deficient in complex I, the Na+ transport activity was low (1-3 nmol mg-1 min-1), and rotenone was without effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号