首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The complete amino acid sequence of 6-phospho-fructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was determined by direct analysis of the S-carboxamidomethyl protein. A complete set of nonoverlapping peptides was produced by cleavage with a combination of cyanogen bromide and specific proteolytic enzymes. The active enzyme is a dimer of two identical polypeptide chains composed of 470 amino acids each. The NH2-terminal amino acid residue of the polypeptide chain was shown to be N-acetylserine by fast atom bombardment mass spectrometry of the purified N-terminal tetradecapeptide isolated after cleavage of the intact S-carboxamidomethylated protein with lysyl endoproteinase (Achromobacter protease I). Alignment of the set of unique peptides was accomplished by the analysis of selected overlapping peptides generated by proteolytic cleavage of the intact protein and the larger purified cyanogen bromide peptides with trypsin, Staphylococcus aureus V8 protease, and lysyl endoproteinase. Four nonoverlapping peptides were aligned by comparison with the amino acid sequence predicted from a partial cDNA clone encoding amino acid positions 166-470 of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Colosia, A.D., Lively, M., El-Maghrabi, M. R., and Pilkis, S. J. (1987) Biochem. Biophys. Res. Commun. 143, 1092-1098). The nucleotide sequence of the cDNA corroborated the peptide sequence determined by direct methods. A search of the Protein Identification Resource protein sequence database revealed that the overall amino acid sequence appears to be unique since no obviously homologous sequences were identified. However, a 100-residue segment of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (residues 250-349), including the active site histidine residue of the bisphosphatase domain, was found to be homologous to the active site regions of yeast phosphoglycerate mutase and human bisphosphoglycerate mutase.  相似文献   

2.
3.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

4.
The gene encoding aspartate aminotransferase of a thermophilic Bacillus species, YM-2, has been cloned and expressed efficiently in Escherichia coli. The primary structure of the enzyme was deduced from nucleotide sequences of the gene and confirmed mostly by amino acid sequences of tryptic peptides. The gene consists of 1,176 base pairs encoding a protein of 392 amino acid residues; the molecular mass of the enzyme subunit is estimated to be 42,661 daltons. The active site lysyl residue that binds the coenzyme, pyridoxal phosphate, was identified as Lys-239. Comparison of the amino acid sequence with those of aspartate aminotransferases from other organisms revealed very low overall similarities (13-14%) except for the sequence of the extremely thermostable enzyme from Sulfolobus solfataricus (34%). Several amino acid residues conserved in all the compared sequences include those that have been reported to participate in binding of the coenzyme in three-dimensional structures of the vertebrate and E. coli enzymes. However, the strictly conserved arginyl residue that is essential for binding of the distal carboxyl group of substrates is not found in the corresponding region of the sequences of the thermostable enzymes from the Bacillus species and S. solfataricus. The Bacillus aspartate aminotransferase has been purified from the E. coli clone cell extracts on a large scale and crystallized in the buffered ammonium sulfate solution by the hanging drop method. The crystals are monoclinic with unit cell dimensions a = 121.2 A, b = 110.5 A, c = 81.8 A, and beta = 97.6 degrees, belonging to space group C2, and contain two molecules in the asymmetric unit. The crystals of the enzyme-alpha-methylaspartate complex are isomorphous with those without the substrate analog.  相似文献   

5.
The intracellular level of beta-hydroxydecanoyl thio ester dehydrase, the product of the fabA gene of Escherichia coli, was increased by isolation of a putative promotor mutant (termed fabAup) or by molecular cloning of the wild-type fabA gene into plasmid pBR322. The fabAup and plasmid-carrying strains overproduced dehydrase by about 15- and 10-fold, respectively. The phospholipids of all strains that overproduced the dehydrase contained significantly higher levels of saturated fatty acids than isogenic strains producing a normal level of dehydrase. No increased levels of unsaturated fatty acids were observed. This result indicates that, although the dehydrase is required for unsaturated fatty acid synthesis, the level of dehydrase activity in wild-type cells does not limit the rate of unsaturated fatty acid synthesis. The introduction of a plasmid carrying the structural gene for beta-ketoacyl acyl carrier protein synthase I into a fabAup strain overcame the effect of dehydrase overproduction on fatty acid composition.  相似文献   

6.
A cDNA encoding acetylcholinesterase (AChE) (EC 3.1.1.7) from Torpedo californica was isolated and from its nucleotide sequence the entire amino acid sequence of the processed protein and a portion of the leader peptide has been deduced. Approximately 70% of the tryptic peptides from the catalytic subunit of the 11 S form have been sequenced, and a comparison of the peptide sequences with the sequence inferred from the cDNA suggests that the cDNA sequence derives from mRNA for the 11 S form of the enzyme. The amino acid sequence is preceded by a hydrophobic leader peptide and contains an open reading frame encoding for 575 amino acids characteristic of a secreted globular protein. Eight cysteines, most of which are disulfide linked, are found along with four potential sites of N-linked glycosylation. The active-site serine is located at residue 200. Local homology is found with other serine hydrolases in the vicinity of the active site, but the enzyme shows striking global homology with the COOH-terminal portion of thyroglobulin. Further comparison of the amino acid sequences of the individual enzyme forms with other cDNA clones that have been isolated should resolve the molecular basis for polymorphism of the AChE species.  相似文献   

7.
The following amino acid sequence of the tryptic SH-peptide of thermitase, a thermostable serine proteinase from Thermoactinomyces vulgaris, was determined: Val-Val-Gly-Gly-Trp-Asp-Phe-Val-Asp-Asn-Asp-Ser-Thr- Pro-Gln-Asn-Gly-Asn-Gly-64His-Gly-Thr-His-68Cys-Ala- Gly-Ile-Ala-Ala-Ala-Val-Thr-Asn-Asn-Ser-Thr-Gly-Ile- Ala-Gly-Thr-Ala-Pro-Lys. This sequence shows homology with the highly conservative part of the subtilisin sequences around the active site His-64. The single cysteine residue of thermitase is localized near this histidine residue thus replacing valine in position 68 (according to the numbering of the subtilisins). This becomes evident also from the specific labeling of the active site histidine with a radioactive inhibitor (Z-Ala-Ala-Phe-14CH2-Cl). The tryptic SH-peptide isolated from the modified enzyme contains all the radioactivity and has the same end group and amino acid composition as the tryptic peptide isolated from the tryptic digest of the unlabeled enzyme and subjected to sequential analysis. From sequence homology as well as from secondary structure predictions it may be concluded that the geometry of the active site of thermitase is very similar to that of the subtilisins with the cysteine residue nearby. The inactivation of thermitase by labeling of the SH-group with mercury compounds may then be due to a sterical hindrance or to a more direct interaction of the mercury atom with the charge relay system of the enzyme.  相似文献   

8.
The molecular weight and amino acid composition of phosphoglycerate mutase from yeast were determined. CNBr cleavage produced a large (190-residue) fragment and a small (60-residue) fragment. Tryptic and chymotryptic peptides derived from the large fragment were fractionated by ion-exchange chromatography. Peptides from two histidine-containing regions were isolated and the amino acid sequences were determined. Correlation of these data with X-ray-crystallographic evidence shows that the histidine residue in the sequence Arg-Leu Asn-Glu-Arg-His-Tyr-Gly-Asp-Leu-Glu-Gly-Lys is located at the active site.  相似文献   

9.
The Escherichia coli CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase gene is located on a 3.3-kilobase (kb) HindIII fragment of the plasmid pSR23 which contains the genes for K1 capsule production (Vann, W. F., Silver, R. P., Abeijon, C., Chang, K., Aaronson, W., Sutton, A., Finn, C. W., Lindner, W., and Kotsatos, M. (1987) J. Biol. Chem. 262, 17556-17562). The CMP-NeuAc synthetase gene expression was increased 10-30-fold by cloning of a 2.7-kb EcoRI-HindIII fragment onto the vector pKK223-3 containing the tac promoter. The complete nucleotide sequence of the gene encoding CMP-NeuAc synthetase was determined from progressive deletions generated by selective digestion of M13 clones containing the 2.7-kb fragment. CMP-NeuAc synthetase is located near the EcoRI site on this fragment as indicated by the detection of an open reading frame encoding a 49,000-dalton polypeptide. The amino- and carboxyl-terminal sequences of the encoded protein were confirmed by sequencing of peptides cleaved from both ends of the purified enzyme. The nucleotide deduced amino acid sequence was confirmed by sequencing several tryptic peptides of purified enzyme. The molecular weight is consistent with that determined from sodium dodecyl sulfate-gel electrophoresis. Gel filtration and ultracentrifugation experiments under nondenaturing conditions suggest that the enzyme is active as a 49,000-dalton monomer but may form aggregates.  相似文献   

10.
EPg222 protease is a novel extracellular enzyme produced by Penicillium chrysogenum (Pg222) isolated from dry-cured hams that has the potential for use over a broad range of applications in industries that produce dry-cured meat products. The gene encoding EPg222 protease has been identified. Peptide sequences of EPg222 were obtained by de novo sequencing of tryptic peptides using mass spectrometry. The corresponding gene was amplified by PCR using degenerated primers based on a combination of conserved serine protease-encoding sequences and reverse translation of the peptide sequences. EPg222 is encoded as a gene of 1,361 bp interrupted by two introns. The deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a putative signal sequence of 19 amino acids (aa), a prosequence of 96 aa and a mature protein of 283 aa. A cDNA encoding EPg222 has been cloned and expressed as a functionally active enzyme in Pichia pastoris. The recombinant enzyme exhibits similar activities to the native enzyme against a wide range of protein substrates including muscle myofibrillar protein. The mature sequence contains conserved aa residues characteristic of those forming the catalytic triad of serine proteases (Asp42, His76 and Ser228) but notably the food enzyme exhibits specific aa substitutions in the immunoglobulin-E recognition regions that have been identified in protein homologues that are allergenic.  相似文献   

11.
The nucleotide sequence of the cellulase gene celC, encoding endoglucanase C of Clostridium thermocellum, has been determined. The coding region of 1032 bp was identified by comparison with the N-terminal amino acid (aa) sequence of endoglucanase C purified from Escherichia coli. The ATG start codon is preceded by an AGGAGG sequence typical of ribosome-binding sites in Gram-positive bacteria. The derived amino acid sequence corresponds to a protein of Mr 40,439. Amino acid analysis and apparent Mr of endoglucanase C are consistent with the amino acid sequence as derived from the DNA sequencing data. A proposed N-terminal 21-aa residue leader (signal) sequence differs from other prokaryotic signal peptides and is non-functional in E. coli. Most of the protein bears no resemblance to the endoglucanases A, B, and D of the same organism. However, a short region of homology between endoglucanases A and C was identified, which is similar to the established active sites of lysozymes and to related sequences of fungal cellulases.  相似文献   

12.
The intact, 100 kd microsomal enzyme and the 53 kd catalytic fragment of rat HMG-CoA reductase are both phosphorylated and inactivated by the AMP-activated protein kinase. Using the catalytic fragment, we have purified and sequenced peptides containing the single site of phosphorylation. Comparison with the amino acid sequence predicted from the cDNAs encoding other mammalian HMG-CoA reductases identifies this site as a serine residue close to the C-terminus (Ser872 in the human enzyme). Phosphopeptide mapping of native, 100 kd microsomal HMG-CoA reductase confirms that this C-terminal serine is the only major site phosphorylated in the intact enzyme by the AMP-activated protein kinase. The catalytic fragment of HMG-CoA reductase was also isolated from rat liver in the presence of protein phosphatase inhibitors under conditions where the enzyme is largely in the inactive form. HPLC, mass spectrometry and sequencing of the peptide containing Ser872 demonstrated that this site is highly phosphorylated in intact liver under these conditions. We have also identified by amino acid sequencing the N-terminus of the catalytic fragment, which corresponds to residue 423 of the human enzyme.  相似文献   

13.
14.
The gene for thermostable D-amino acid aminotransferase from a thermophile, Bacillus species YM-1 was cloned and expressed efficiently in Escherichia coli. The entire covalent structure of the enzyme was determined from the nucleotide sequence of the cloned gene and mostly confirmed by amino acid sequences of tryptic peptides from the gene product. The polypeptide is composed of 282 amino acid residues with a calculated molecular weight of 32,226. Comparison of the primary structure with those of various proteins registered in a protein data bank revealed a significant sequence homology between D-amino acid aminotransferase and the L-branched chain amino acid aminotransferase of E. coli (Kuramitsu, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 993-999); the active site lysyl residue is located in an equivalent position in both enzyme sequences of similar size. Despite the difference in subunit composition and no immunochemical cross-reactivity, the sequences of the two enzymes show similar hydropathy profiles, and spectrophotometric properties of the enzyme-bound cofactor are also similar. The sequence homology suggests that the structural genes for D-amino acid and L-branched chain amino acid aminotransferases evolved from a common ancestral gene.  相似文献   

15.
A gene encoding the salicylate hydroxylase was cloned from the genomic DNA of Pseudomonas fluorescens SME11. The DNA fragment containing the nahG gene for the salicylate hydroxylase was mapped with restriction endonucleases and sequenced. The DNA fragment contained an ORF of 1,305 bp encoding a polypeptide of 434 amino acid residues. The nucleotide and amino acid sequences of the salicylate hydroxylase revealed several conserved regions with those of the enzyme encoded in P. putida PpG7: The homology of the nucleotide sequence is 83% and that of amino acid sequence is 72%. We found large conserved regions of the amino acid sequence at FAD and NADH binding regions. The FAD binding site is located at the amino terminal region and a lysine residue functions as a NADH-binding site.  相似文献   

16.
A base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi (RNase M) was modified by [14C]iodoacetic acid. RNase M was inactivated with concomitant incorporation of about 1 mol equivalent of carboxymethyl group. Carboxymethylated RNase M (CM RNase M) thus obtained was reduced and carboxymethylated (RCM CM RNase M). From tryptic and chymotryptic digests of RCM CM RNase M, two carboxymethylated histidine-containing peptides labeled with radioactivity were isolated. The amino acid sequences of these two peptides were determined to be Thr-Ile-His-Gly-Leu-Trp-Pro-Asp-Asn-Cys-Asp-Gly-Ser-Tyr... and His-Gly-Thr-Cys-Ile-Asn-Thr-Ile-Asp-Pro-Ser-Cys-Tyr-Pro-Asp-Asp-Tyr-Ala. .... The distribution of the radioactivity on the former and latter peptides was 43% and 57%, respectively. The results indicated that two histidine residues are involved in the active site of RNase M, and the modification of either one of the two histidine residues inactivates RNase M. The CD spectrum of carboxymethylated RNase M indicated that some tryptophan residue(s) with a CD band at 287 nm is in the proximity of the active site histidine residues of RNase M.  相似文献   

17.
The substrate binding site of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli was studied by affinity labeling with L-2-amino-4-oxo-5-chloropentanoic acid. The substrate analogue irreversibly inactivates the enzyme with pseudo-first-order kinetics and with a half-of-the-sites reactivity. The substrate aspartate beta-semialdehyde protects the enzyme against the inactivation. A single group is labeled at the active site and is concluded to be the side-chain of a histidine residue. The amino acid sequence around the active site residue was established from a peptic digest of the labeled enzyme: Phe-Val-Gly-Gly-Asp-(modified residue)-Thr-Val-Ser.  相似文献   

18.
The gene encoding trypanothione reductase, the redox disulfide-containing flavoenzyme that is unique to the parasitic trypanosomatids (Shames et al., 1986), has been isolated from the cattle pathogen Trypanosoma congolense. Library screening was carried out with inosine-containing oligonucleotide probes encoding sequences determined from two active site peptides isolated from the purified Crithidia fasciculata enzyme. The nucleotide sequence of the gene was determined according to the dideoxy chain termination method of Sanger. The structural gene is 1476 nucleotides long and encodes 492 amino acids. We have identified the active site peptide containing the redox-active disulfide, a peptide corresponding to the histidine-467 region of human erythrocyte glutathione reductase, as well as the flavin binding domain that is highly conserved in all disulfide-containing flavoprotein reductase enzymes. Alignment of five tryptic peptides (80 residues) isolated from the C. fasciculata trypanothione reductase with the primary sequence of the T. congolense enzyme showed 88% homology with 76% identity. Additionally, a sequence comparison of the glutathione reductase from Escherichia coli or human erythrocytes to T. congolense trypanothione reductase reveals greater than 50% homology. A search for the amino acid residues in the primary sequence of trypanothione reductase functionally active in binding/catalysis in human erythrocyte glutathione reductase shows that only the two arginine residues (Arg-37 and Arg-347), shown by X-ray crystallographic data to hydrogen bond to the GS1 glutathione glycyl carboxylate, are absent.  相似文献   

19.
The nucleotide sequence of a 1.3-kilobase NaeI fragment from Morganella morganii AM-15 that contains the gene for histidine decarboxylase has been determined. The gene was initially identified among total chromosomal digests using a mixed sequence oligonucleotide probe corresponding to amino acids 11-16 of histidine decarboxylase and then cloned on a 5.5-kilobase PstI fragment. The structural gene contains 1131 nucleotides and encodes 377 amino acids with the sequence: (sequence: in text). The independently determined NH2-terminal sequence of this enzyme (Tanase, S., Guirard, B. M., and Snell, E. E. (1985) J. Biol. Chem. 260, 6738-6746) and the amino acid sequences of two tryptic peptides reported in the accompanying paper (Hayashi, H., Tanase, S., and Snell, E. E. (1986) J. Biol. Chem. 261, 11003-11009) are localized in the sequence presented here; the lysine that binds pyridoxal phosphate is situated at residue 232, whereas the serine that binds the adduct formed between pyridoxal phosphate and the inhibitor alpha-fluoromethylhistidine is positioned at residue 322.  相似文献   

20.
A gene encoding an alpha-1,2-mannosyltransferase from Saccharomyces cerevisiae was cloned and sequenced. The alpha-1,2-mannosyltransferase which utilizes alpha-methylmannoside as acceptor of mannose from GDP-mannose was purified. The enzyme activity was shown to correspond to a 41 kDa protein band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. This protein band was digested in situ with trypsin and amino acid sequence information was obtained from four peptides. Degenerate oligonucleotide primers corresponding to the amino acid sequences were designed and used for polymerase chain reactions on yeast genomic DNA. A specific reaction product was used to screen a genomic library of S.cerevisiae. A fragment of approximately 5.7 kb was isolated, of which a 2.9 kb fragment was sequenced. It contained a 1329 base pair open reading frame encoding the peptide sequences of the purified alpha-1,2-mannosyltransferase. The gene, designated MNT1, is located on the right arm of chromosome 4. It encodes a 442 amino acid polypeptide with a calculated mol. wt of 51.4 kDa. The corresponding mRNA has a length of approximately 1.6 kb. Overexpression of the MNT1 gene increased this alpha-1,2-mannosyltransferase activity approximately 2.5-fold. The protein was shown to be modified with N-linked carbohydrate chains and its sequence contains one N-glycosylation site. The enzyme contains a putative membrane-spanning domain near its N-terminus and its topology is thus similar to that of mammalian Golgi glycosyltransferases. This is the first report of the cloning and sequencing of a yeast Golgi mannosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号