首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three strains of Sclerotinia sclerotiorum, namely Ep-1PB (PB), Ep-1PK (PK) and Ep-1PNA5 (A5), were compared for the production of oxalic acid (OA) on potato dextrose agar (PDA) and Maxwell agar medium (MAM) and for mycelial susceptibility to infection by the mycoparasite Coniothyrium minitans on PDA. Results showed that strain PB produced negligible oxalate, whereas strain PK was detected to produce oxalate, but much less than that produced by strain A5. The three investigated strains differed slightly in mycelial growth rates and mycelial biomass on PDA. However, colonies of strains PB and PK formed on PDA were more susceptible to invasion by C. minitans than colonies of strain A5. Meanwhile, amendment of synthetic oxalate in PDA at 0.25–2.00 mg g−1 medium suppressed aggressiveness of C. minitans in invasion of colonies of S. sclerotiorum strain PB developed on this medium. These results suggest that infection of hyphae of S. sclerotiorum is negatively affected by the presence of oxalate. The importance of oxalate degradation by C. minitans in its mycoparasitism on hyphae of S. sclerotiorum provides a clue for improvement of the biocontrol efficacy of C. minitans in the future.  相似文献   

2.
Plant diseases and insect pests are serious threat to the growth and yield of oilseed rape. In this study, a binary vector carrying sporamin and chitinase PjChi-1 genes in tandem was introduced into Brassica napus cv. ZS 758 via Agrobacterium tumefaciens for dual resistance against disease and insect attack. Thirty-two regenerated plantlets exhibiting hygromycin resistance were selected following Agrobacterium-mediated transformation of 600 leaf petiole explants. Of these, 27 transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR) with 4.5% transformation efficiency. Eight plantlets were randomly selected for further confirmation by Southern and northern blot hybridization analyses. Four plants carried single copy of the transgenes, while the remaining four plants carried either two or three copies of the transgenes. Moreover, expression of the sporamin transgene was detected by northern blot hybridization in transgenic lines, but not in wild-type plants. These eight T0 plants were grown in vitro, and inoculated with the Lepidoptera larvae of Plutella xylostella and with spores of the fungal pathogen of Sclerotinia sclerotiorum. Transgenic plants exhibited high levels of resistance to P. xylostella and S. sclerotiorum when compared to untransformed wild-type plants. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Therefore, these transgenic lines demonstrate a promising potential for variety development of oilseed rape lines with enhanced resistance against both P. xylostella and S. sclerotiorum.  相似文献   

3.
Canola (Brassica napus L.) is an agriculturally and economically important crop in Canada, and its growth and yield are frequently influenced by fungal pathogens. Sclerotinia sclerotiorum is among those fungal pathogens and causes stem rot disease in B. napus whereas it has been reported that Brassica carinata is moderately tolerant to S. sclerotiorum. Jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) are phytohormones that are known to be involved in plant disease responses. To investigate the defense signaling cascades involved in the interaction of B. napus and B. carinata with S. sclerotiorum, we examined the expression of five orthologs of B. napus genes involved in JA/ET or SA signaling pathways using quantitative RT-PCR. Our results indicated that there are differences in the timing of JA/ET and SA signaling pathways between B. napus and B. carinata. Our results in these two Brassica species also support previous observations that necrotrophic pathogens trigger JA/ET signaling in response to infection. Finally, we observed that transgenic canola expressing 1-aminocyclopropane-1-carboxylate-deaminase producing low levels of ET was relatively more susceptible to S. sclerotiorum than its wild-type counterpart, suggesting that ET inhibits S. sclerotiorum-induced symptom development.  相似文献   

4.
The Pythium biocontrol features of 17 Paenibacillus strains, all previously isolated from the rhizosphere, hyphosphere or bulk soil from mycorrhizal and non-mycorrhizal cucumber plants, were examined using a cucumber seedling emergence bioassay. Thirteen strains – four strains of Paenibacillus polymyxa, eight strains of P. macerans and one strain of Paenibacillus sp. – significantly increased the percentage of seedling emergence of seeds inoculated with agar plugs of Pythium aphanidermatum FC42. Overall, the efficacy of Pythium biocontrol did not seem to differ between isolates of Paenibacillus originating from either mycorrhizal or non-mycorrhizal systems. No strains significantly reduced the damping-off incidence caused by the aggressive isolate Pythium sp. B5. Two strains of P. macerans not only reduced the incidence of pre-emergence damping-off by 73%, but they also counteracted the plant growth-depressing effect of P. aphanidermatum FC42, so that 68–82% of the emerged seedlings remained healthy 7 days after sowing. Two strains of P. macerans and one strain of P. polymyxa also significantly increased the percentage of seedling emergence following inoculation with approximately 105 zoospores of P. aphanidermatum FC42. There was no significant difference between the dry weight of three selected bacteria-inoculated and -uninoculated plants in the absence of Pythium; however, the dry weight of bacteria-inoculated plants was significantly higher than that of the uninoculated control plants with bacteria in the presence of P. aphanidermatum FC42.  相似文献   

5.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

6.
In this report, four Bacillus strains were tested for effects on plant fitness and disease protection of oilseed rape (Brassica napus). The strains belonged to newly discovered plant-associated Bacillus amyloliquefaciens and a recently proposed species, Bacillus endophyticus. The fungal pathogens tested represented different infection strategies and included Alternaria brassicae, Botrytis cinerea, Leptosphaeria maculans, and Verticillium longisporum. The B. amyloliquefaciens strains showed no or a weak plant growth promoting activity, whereas the B. endophyticus strain had negative effects on the plant as revealed by phenological analysis. On the other hand, two of the B. amyloliquefaciens strains conferred protection of oilseed rape toward all pathogens tested. In vitro experiments studying the effects of Bacillus exudates on fungal growth showed clear growth inhibition in several but not all cases. The protective effects of Bacillus can therefore, at least in part, be explained by production of antibiotic substances, but other mechanisms must also be involved probably as a result of intricate plant–bacteria interaction. The protective effects observed for certain Bacillus strains make them highly interesting for further studies as biocontrol agents in Brassica cultivation.  相似文献   

7.
Sclerotinia sclerotiorum, a plant pathogenic ascomycete, secretes multiple pectinolytic enzymes that facilitate penetration, colonization, and maceration of the plant tissues. Molecular analysis has previously revealed that the pectinolytic system of the fungus is organized as a multigene family, among which a subfamily of three members encoding for neutral endopolygalacturonase (endoPG) isoforms has been characterized. Here we describe the isolation and characterization of three additional endoPG-encoding genes (pg5, pg6, and pg7) that belong to distinct phylogenetic groups. Pairwise sequence comparison between the known endoPGs from S. sclerotiorum revealed 43% to 97% identity, and the genomic organization of the pectinolytic system showed a great similarity to that of the related necrotroph Botrytis cinerea. During plant pathogenesis, a sequential expression of the endoPG-encoding genes was shown.  相似文献   

8.
Culturable rhizosphere bacterial communities had been shown to exhibit wave-like distribution patterns along wheat roots. In the current work we show, for the first time, significant wave-like oscillations of an individual bacterial strain, the biocontrol agent Pseudomonas fluorescens 32 marked with gfp, along 3-week-old wheat roots in a conventionally managed and an organically managed soil. Significant wave-like fluctuations were observed for colony forming units (CFUs) on selective media and direct fluorescent counts under the microscope. Densities of fluorescent cells and of CFUs fluctuated in a similar manner along wheat roots in the conventional soil. The frequencies of the first, second, and third harmonics were similar for direct cell counts and CFUs. Survival of P. fluorescens 32-gfp introduced into organically managed soil was lower than that of the same strain added to conventionally managed soil. Thus, when root tips reached a depth of 10–35 cm below soil level, the majority of the introduced cells may have died, so that no cells or CFU”s were detected in this region at the time of sampling. As a result, significant waves in CFUs or direct counts along roots were not found in organically managed soil, except when a sufficiently long series with detectable CFUs were obtained. In this last case the wave-like fluctuation in CFUs was damped toward the root tip. In conclusion, when cells of a single bacterial strain randomly mixed in soil survived until a root tip passed, growth and death cycles after passage of the root tip resulted in oscillating patterns of population densities of this strain along 3-week-old wheat roots.  相似文献   

9.
Chitinases are digestive enzymes that break down glycosidic bonds in chitin. In the current study, an endochitinase gene Lbchi31 was cloned from Limonium bicolor. The cDNA sequence of Lbchi31 was 1,107 bp in length, encoding 322 amino acid residues with a calculated molecular mass of 31.7 kDa. Clustal analysis showed that there was a highly conserved chitin-binding domains in Lbchi31 protein, containing four sulfide bridges. The Lbchi31 gene was inserted into the pPIC9 vector and transferred into yeast Pichia pastoris GS115 and KM71 for heterologous expression. The transformant harboring the Lbchi31 gene showed a clearly visible protein band with a molecular mass of more than 31 kDa in the SDS-PAGE gel, indicating that it had been translated in P. pastoris. Enzyme characterization showed that the optimal reaction condition for chitinase LbCHI31 activity was: 40°C, pH of 5.0 and 5 mmol l−1 of Mn2+. The maximum enzyme activity was 0.88 U ml−1 following exposure to the cell wall chitin of Valsa sordida. The LbCHI31 enzyme can efficiently degrade cell wall chitin of the phytopathogenic Rhizoctonia solani, Fusarium oxysporum, Sclerotinia sclerotiorum, V. sordida, Septoria tritici and Phytophthora sojae, suggesting that it has the biocontrol function to fungal phytopathogen.  相似文献   

10.
Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization.  相似文献   

11.
Embryo rescue technique was used successfully to produce interspecific hybrids by crossing peach (P. persica) as a female parent with apricot (P. armeniaca) and plum (P. salicica). In those crosses that had ‘Yuhualu’ or ‘Zhonghuashoutao’ as female parents, hybrid embryos aborted from the 7th or 8th week after pollination mainly due to post-pollination incompatibility. An embryo rescue protocol was established to rescue such embryos and recover hybrid plants. Modified half-strength MS medium containing 4 mg l−1 6-BA and 0.5 mg l−1 IBA produced up to 90% germination in the embryos. Modified MS medium with 1.0 mg l−1 6-BA and 1.0 mg l−1 IBA gave the highest bud induction and multiplication whereas modified MS medium containing 0.5 mg l−1 IAA and 0.2 mg l−1 NAA gave the best rooting percentage. All the hybrids obtained using this embryo rescue technique were verified using simple sequence repeat (SSR) markers. A series of pollen treatments were carried out to partially overcome pre-pollination incompatibility, and it was found accidentally that pollen treatment with electrostatic field not only improved pollen germination but also increased the multiplication coefficient of embryo-induced shoots.  相似文献   

12.
13.
Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD + bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD + antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92–5.33%), 25 produced indole acetic acid (1.63–7.78 μg ml−1) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD +) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD + bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD +) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant−1 respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD + isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.  相似文献   

14.
Rapeseed (Brassica napus L.) is the leading European oilseed crop serving as source for edible oil and renewable energy. The objectives of our study were to (i) examine the population structure of a large and diverse set of B. napus inbred lines, (ii) investigate patterns of genetic diversity within and among different germplasm types, (iii) compare the two genomes of B. napus with regard to genetic diversity, and (iv) assess the extent of linkage disequilibrium (LD) between simple sequence repeat (SSR) markers. Our study was based on 509 B. napus inbred lines genotyped with 89 genome-specific SSR primer combinations. Both a principal coordinate analysis and software STRUCTURE revealed that winter types, spring types, and swedes were assigned to three major clusters. The genetic diversity of winter oilseed rape was lower than the diversity found in other germplasm types. Within winter oilseed rape types, a decay of genetic diversity with more recent release dates and reduced levels of erucic acid and glucosinolates was observed. The percentage of linked SSR loci pairs in significant (r 2 > Q 95 unlinked loci pairs) LD was 6.29% for the entire germplasm set. Furthermore, LD decayed rapidly with distance, which will allow a relatively high mapping resolution in genome-wide association studies using our germplasm set, but, on the other hand, will require a high number of markers.  相似文献   

15.
In many sunflower-growing regions of the world, Sclerotinia sclerotiorum (Lib.) de Bary is the major disease of sunflower (Helianthus annuus L.). In this study, we mapped and characterized quantitative trait loci (QTL) involved in resistance to S. sclerotiorum midstalk rot and two morphological traits. A total of 351 F3 families developed from a cross between a resistant inbred line from the germplasm pool NDBLOS and the susceptible line CM625 were assayed for their parental F2 genotype at 117 codominant simple sequence repeat markers. Disease resistance of the F3 families was screened under artificial infection in field experiments across two sowing times in 1999. For the three resistance traits (leaf lesion, stem lesion, and speed of fungal growth) and the two morphological traits, genotypic variances were highly significant. Heritabilities were moderate to high (h2=0.55–0.89). Genotypic correlations between resistance traits were highly significant (P<0.01) but moderate. QTL were detected for all three resistance traits, but estimated effects at most QTL were small. Simultaneously, they explained between 24.4% and 33.7% of the genotypic variance for resistance against S. sclerotiorum. Five of the 15 genomic regions carrying a QTL for either of the three resistance traits also carried a QTL for one of the two morphological traits. The prospects of marker-assisted selection (MAS) for resistance to S. sclerotiorum are limited due to the complex genetic architecture of the trait. MAS can be superior to classical phenotypic selection only with low marker costs and fast selection cycles.  相似文献   

16.
The introduction into strain Pseudomonas chlororaphis 449 of plasmid pME6863 that contains the cloned gene for N-acyl-homoserine lactonase, AiiA, leads to the degradation of all three types of N-acylhomoserine lactones produced by this strain (N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, and N-3-oxo-hexanoyl-homoserine lactone). This causes a drastic reduction in the synthesis of phenazine pigment and decreases the ability of cells to migrate on the surface of nutrient medium. However, the antagonistic activity of P. chlororaphis 449 toward phytopathogenic fungi Sclerotinia sclerotiorum and Rhizoctonia solani is not only decreased, but is even slightly increased; no essential changes in the exoprotease activity were observed. It is assumed that one of the QS systems of P. chlororaphis 449 may exert the repression effect on the expression of genes, which determine the two latter cell activities.  相似文献   

17.
An algicidal bacterium Pseudomonas fluorescens HYK0210-SK09 (SK09) was applied to a natural bloom of Stephanodiscus hantzschii using a small-scale mesocosm (SM) and a large-scale mesocosm (LM) to clarify the algicidal effects and evaluate the response of the planktonic community and environments. When SK09 cells were inoculated at a final concentration of 5 × 106 cells mL−1, the abundance of S. hantzschii decreased significantly by 95% in SM and 85% in LM. The microcosm in the laboratory revealed that the abundance of Pseudomonas increased rapidly after inoculation with a corresponding decrease in the S. hantzschii population. Nutrient concentrations increased following the decline in the diatom cells. The abundances of nondominant species such as Chlamydomonas, Cryptomonas, and Navicula increased slightly with increased nutrient concentrations. The abundance of heterotrophic protists also increased significantly due to utilization of SK09 as food. The present study demonstrates that SK09 is an effective biocontrol agent for natural S. hantzschii bloom, and grazing pressure plays a crucial role in the successful application of algicidal bacteria to natural environments.  相似文献   

18.
The development of transgenic plants highly resistant to a range of pathogens using traditional signal gene expression strategies has been largely ineffective. Modification of systemic acquired resistance (SAR) through the overexpression of a controlling gene such as NPR1 (non-expressor of PR genes) offers an attractive alternative for augmenting the plants innate defense system. The Arabidopsis (At) NPR1 gene was successfully introduced into ‘Nantes Coreless’ carrot under control of a CaMV 35S promoter and two independent transgenic lines (NPR1-I and NPR1-XI) were identified by Southern and Northern blot hybridization. Both lines were phenotypically normal compared with non-transformed carrots. Northern analysis did not indicate constitutive or spontaneous induction in carrot cultures of SAR-related genes (DcPR-1, 2, 4, 5 or DcPAL). The duration and intensity of expression of DcPR-1, 2 and 5 genes were greatly increased compared with controls when the lines were treated with purified cell wall fragments of Sclerotinia sclerotiorum as well as with 2,6-dichloroisonicotinic acid. The two lines were challenged with the necrotrophic pathogens Botrytis cinerea, Alternaria radicina and S. sclerotiorum on the foliage and A. radicina on the taproots. Both lines exhibited 35–50% reduction in disease symptoms on the foliage and roots when compared with non-transgenic controls. Leaves challenged with the biotrophic pathogen Erysiphe heraclei or the bacterial pathogen Xanthomonas hortorum exhibited 90 and 80% reduction in disease development on the transgenic lines, respectively. The overexpression of the SAR controlling master switch in carrot tissues offers the ability to control a wide range of different pathogens, for which there is currently little genetic resistance available.  相似文献   

19.
Endophytic bacteria of eggplant, cucumber and groundnut were isolated from different locations of Goa, India. Based on in vitro screening, 28 bacterial isolates which effectively inhibited Ralstonia solanacearum, a bacterial wilt pathogen of the eggplant were characterized and identified. More than 50% of these isolates were Pseudomonas fluorescens in which a vast degree of variability was found to exist when biochemical characteristics were compared. In greenhouse experiments, the plants treated with Pseudomonas isolates (EB9, EB67), Enterobacter isolates (EB44, EB89) and Bacillus isolates (EC4, EC13) reduced the wilt incidence by more than 70%. All the selected isolates reduced damping off by more than 50% and improved the growth of seedlings in the nursery stage. Most of the selected antagonists produced an antibiotic, DAPG, which inhibited R. solanacearum under in vitro conditions and might have been responsible for reduced wilt incidence under in vivo conditions. Also production of siderophores and IAA in the culture medium by the antagonists was recorded, which could be involved in biocontrol and growth promotion in crop plants. From our study we conclude that Pseudomonas is the major antagonistic endophytic bacteria from eggplants which have the potential to be used as a biocontrol agent as well as plant growth-promoting rhizobacteria. Large scale field evaluation and detailed knowledge on antagonistic mechanism could provide an effective biocontrol solution for bacterial wilt of solanaceous crops.  相似文献   

20.
Phytophthora drechsleri damping-off is one of the most important diseases of cucumber (Cucumis sativus). Salinity is a serious problem for crop production and affects diversity and activity of soil microorganisms. Application of salt-tolerant biocontrol agents may be beneficial in order to protect plants against pathogenic fungi in saline soils. In this study, a total of 717 Streptomyces isolates were isolated from the rhizosphere of cucumber, out of which two isolates showed more than 70% inhibitory effect against P. drechsleri and had cellulase activity in the presence and absence of NaCl. In a greenhouse experiment, two Streptomyces isolates with the highest antagonistic activity, strains C 201 and C 801, reduced seedling damping-off of cucumber caused by P. drechsleri by 77 and 80%, respectively, in artificially infested soils. Strain C 201 increased dry weight of seedlings up to 21% in greenhouse experiments. Phylogenetic analyses of 16S rRNA gene sequence reveals that strains C 201 and C 801 are closely related to S. rimosus and S. monomycini respectively. Increased activity of polyphenol oxidase (PPO) and peroxidase (POX) enzymes in Streptomyces-treated plants proved the biocontrol-induced systemic resistance (ISR) in cucumber plants against P. drechsleri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号