首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The community structure and diversity of anaerobic ammonium oxidation (anammox) bacteria in the surface sediments of equatorial Pacific were investigated by phylogenic analysis of 16S rRNA and hydrazine oxidoreductase (hzo) genes and PCoA (principal coordinates analysis) statistical analysis. Results indicated that 16S rRNA and hzo sequences in the P2 (off the center of western Pacific warm pool) and P3 (in the eastern equatorial Pacific) sites all belong to the Candidatus “Scalindua”, the dominate anammox bacteria in the low-temperature marine environment proved by previous studies. However, in the P1 site (in center of warm pool of western Pacific), large part of 16S rRNA gene sequences formed a separated cluster. Meanwhile, hzo gene sequences from P1 sediment also grouped into a single cluster. PCoA analysis demonstrated that the anammox community structure in the P1 has significant geographical distributional difference from that of P2, P3, and other marine environments based on 16S rRNA and hzo genes. The abundances of anammox bacteria in surface sediments of equatorial Pacific were quantified by q-PCR analysis of hzo genes, which ranged from 3.98 × 103 to 1.17 × 104 copies g−1 dry sediments. These results suggested that a special anammox bacteria phylotypes exist in the surface sediment of the western Pacific warm pool, which adapted to the specific habitat and maybe involved in the nitrogen loss process from the fixed inventory in the habitat.  相似文献   

2.
The anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the oxygen-limited zone for nitrogen cycling, but their roles in agricultural ecosystems are still poorly understood. In this study, soil samples were taken from the rhizosphere and non-rhizosphere and from surface (0–5 cm) and subsurface (20–25 cm) layers with 1, 4, and 9 years of rice cultivation history on the typical albic soil of Northeast China to examine the diversity and distribution of anammox bacteria based on 16S rRNA gene and hydrazine oxidoreductase encoding gene (hzo). By comparing these soil samples, no obvious difference was observed in community composition between the rhizosphere and non-rhizosphere or the surface and subsurface layers. Surprisingly, anammox bacterial communities of these rice paddy soils were consisted of mainly Candidatus Scalindua species, which are best known to be dominant in marine and pristine environments. The highest diversity was revealed in the 4-year paddy soil based on clone library analysis. Phylogenetic analysis of 16S rRNA gene and deduced HZO from the corresponding encoding gene showed that most of the obtained clones are grouped together with Candidatus Scalindua sorokinii, Candidatus Scalindua brodae, and Candidatus Scalindua spp. of seawater. The obtained clone sequences from all samples are distributed in two subclusters that contain sequences from environmental samples only. Tentative new species were also discovered in this paddy soil. This study provides the first evidence on the existence of anammox bacteria with limited diversity in agricultural ecosystems in Northern China.  相似文献   

3.
Published polymerase chain reaction primer sets for detecting the genes encoding 16S rRNA gene and hydrazine oxidoreductase (hzo) in anammox bacteria were compared by using the same coastal marine sediment samples. While four previously reported primer sets developed to detect the 16S rRNA gene showed varying specificities between 12% and 77%, an optimized primer combination resulted in up to 98% specificity, and the recovered anammox 16S rRNA gene sequences were >95% sequence identical to published sequences from anammox bacteria in the Candidatus “Scalindua” group. Furthermore, four primer sets used in detecting the hzo gene of anammox bacteria were highly specific (up to 92%) and efficient, and the newly designed primer set in this study amplified longer hzo gene segments suitable for phylogenetic analysis. The optimized primer set for the 16S rRNA gene and the newly designed primer set for the hzo gene were successfully applied to identify anammox bacteria from marine sediments of aquaculture zone, coastal wetland, and deep ocean where the three ecosystems form a gradient of anthropogenic impact. Results indicated a broad distribution of anammox bacteria with high niche-specific community structure within each marine ecosystem.  相似文献   

4.
Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31–39.2 mg l?1) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4?±?0.5?×?103 to 2.0?±?0.18?×?106 cells ml?1 and 6.6?±?0.51?×?102 to 4.9?±?0.36?×?104 cell ml?1, respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus “Scalindua sinooilfield” was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.  相似文献   

5.
Anaerobic ammonium oxidation (anammox) and denitrification are two important processes responsible for nitrogen loss; monitoring of microbial communities carrying out these two processes offers a unique opportunity to understand the microbial nitrogen cycle. The aim of the current study was to characterize community structures and distribution of anammox and nirS-encoding nitrite-reducing bacteria in surface sediments of the northern South China Sea (SCS). The consistent phylogenetic results of three biomarkers of anammox bacteria, including 16S rRNA, hzo, and Scalindua-nirS genes, showed that Scalindua-like bacteria were the only anammox group presenting in surface sediments of the SCS. However, a relatively high micro-diversity was found within this group, including several SCS habitat-specific phylotypes, Candidatus “Scalindua zhenghei”. Comparing to 16S rRNA gene, hzo and Scalindua-nirS genes provided a relatively higher resolution to elucidate anammox bacteria. For the nirS-encoding nitrite-reducing bacteria, the detected nirS gene sequences were closely related to various marine nirS denitrifiers, especially those which originated from coastal and estuarine sediments with a much higher diversity than anammox bacteria. Anammox bacterial communities shifted along with the seawater depth, while nirS-encoding nitrite-reducing bacteria did not. Although nirS-encoding nitrite-reducing bacteria have a much higher abundance and diversity than anammox bacteria, they showed similar abundance variation patterns in research sites, suggesting the two microbial groups might be affected by the similar environmental factors. The significant correlations among the abundance of the two microbial groups with the molar ratio of NH4 + to (NO2 ??+?NO3 ?), pH, and organic matters of sediments strongly supported this hypothesis.  相似文献   

6.
A newly reported 16S rRNA gene-based PCR primer set was successfully applied to detect anammox bacteria from four ecosystem samples, including sediments from marine, reservoir, mangrove wetland, and wastewater treatment plant sludge. This primer set showed ability to amplify a much wider coverage of all reported anammox bacterial genera. Based on the phylogenetic analyses of 16S rRNA gene of anammox bacteria, two new clusters were obtained, one closely related to Candidatus Scalindua, and the other in a previously reported novel genus related to Candidatus Brocadia. In the Scalindua cluster, four new subclusters were also found in this study, mainly by sequences of the South China Sea sediments, presenting a higher diversity of Candidatus Scalindua in marine environment. Community structure analyses indicated that samples were grouped together based on ecosystems, showing a niche-specific distribution. Phylogenetic analyses of anammox bacteria in samples from the South China Sea also indicated distinguished community structure along the depth. Pearson correlation analysis showed that the amount of anammox bacteria in the detected samples was positively correlated with the nitrate concentration. According to Canonical Correspondence Analysis, pH, temperature, nitrite, and nitrate concentration strongly affected the diversity and distribution of anammox bacteria in South China Sea sediments. Results collectively indicated a promising application of this new primer set and higher anammox bacteria diversity in the marine environment.  相似文献   

7.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of ~700-bp 16S rRNA gene sequences with >96% homology to the “Candidatus Scalindua” group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to “Ca. Scalindua,” “Candidatus Brocadia,” and “Candidatus Kuenenia.” This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

8.
M. Li  Y. Hong  H. Cao  M. G. Klotz  J.‐D. Gu 《Geobiology》2013,11(2):170-179
In marine ecosystems, both nitrite‐reducing bacteria and anaerobic ammonium‐oxidizing (anammox) bacteria, containing different types of NO‐forming nitrite reductase–encoding genes, contribute to the nitrogen cycle. The objectives of study were to reveal the diversity, abundance, and distribution of NO‐forming nitrite reductase–encoding genes in deep‐sea subsurface environments. Results showed that higher diversity and abundance of nirS gene than nirK and Scalindua‐nirS genes were evident in the sediments of the South China Sea (SCS), indicating bacteria containing nirS gene dominated the NO‐forming nitrite‐reducing microbial community in this ecosystem. Similar diversity and abundance distribution patterns of both nirS and Scalindua‐nirS genes were detected in this study sites, but different from nirK gene. Further statistical analyses also showed both nirS and Scalindua‐nirS genes respond similarly to environmental factors, but differed from nirK gene. These results suggest that bacteria containing nirS and Scalindua‐nirS genes share similar niche in deep‐sea subsurface sediments of the SCS, but differed from those containing nirK gene, indicating that community structures of nitrite‐reducing bacteria are segregated by the functional modules (NirS vs. NirK) rather than the competing processes (anammox vs. classical denitrification).  相似文献   

9.

PCR primers targeting genes encoding the two proteins of anammox bacteria, hydrazine synthase and cytochrome c biogenesis protein, were designed and tested in this study. Three different ecotypes of samples, namely ocean sediments, coastal wetland sediments, and wastewater treatment plant (WWTP) samples, were used to assess the primer efficiency and the community structures of anammox bacteria retrieved by 16S ribosomal RNA (rRNA) and the functional genes. Abundances of hzsB gene of anammox bacteria in South China Sea (SCS) samples were significantly correlated with 16S rRNA gene by qPCR method. And hzsB and hzsC gene primer pair hzsB364f-hzsB640r and hzsC745f-hzsC862r in combination with anammox bacterial 16S rRNA gene primers were recommended for quantifying anammox bacteria. Congruent with 16S rRNA gene-based community study, functional gene hzsB could also delineate the coastal-ocean distributing pattern, and seawater depth was positively associated with the diversity and abundance of anammox bacteria from shallow- to deep-sea. Both hzsC and ccsA genes could differentiate marine samples between deep and shallow groups of the Scalindua sp. clades. As for WWTP samples, non-Scalindua anammox bacteria reflected by hzsB, hzsC, ccsA, and ccsB gene-based libraries showed a similar distribution pattern with that by 16S rRNA gene. NH4 + and NH4 +/Σ(NO3 + NO2 ) positively correlated with anammox bacteria gene diversity, but organic matter contents correlated negatively with anammox bacteria gene diversity in SCS. Salinity was positively associated with diversity indices of hzsC and ccsB gene-harboring anammox bacteria communities and could potentially differentiate the distribution patterns between shallow- and deep-sea sediment samples. SCS surface sediments harbored considerably diverse community of Scalindua. A new Mai Po clade representing coastal estuary wetland anammox bacteria group based on 16S rRNA gene phylogeny is proposed. Existence of anammox bacteria within wider coverage of genera in Mai Po wetland indicates this unique niche is very complex, and species of anammox bacteria are niche-specific with different physiological properties towards substrates competing and chemical tolerance capability.

  相似文献   

10.
The community structures of anammox bacteria in sediments along an anthropogenic inorganic nitrogen input gradient were further delineated with the newly available information incorporated. Anammox bacterial 16S rRNA gene-amplified sequences retrieved from riparian sediments of the Pearl River, Mai Po coastal wetland, and the South China Sea (SCS) sediments were compiled, compared and analyzed. Results indicated that the community structures of anammox bacteria varied from the upstream of the Pearl River to deep-ocean sediment of the SCS along the anthropogenic input grandient. Mai Po wetland had the most diverse anammox bacteria, followed by the shallow SCS, deep SCS and the Pearl River. Genera of the anammox bacteria Kuenenia and Brocadia showed higher proportion in the riparian sediments of the Pearl River, while those of Kuenenia and Scalindua dominated the Mai Po coastal wetland. The Scalindua subclusters showed apparent segregation in coastal wetland (S. zhenghei-III and S. wagneri), shallow SCS (S. zhenghei-I and S3) and deep SCS (S. zhenghei-I, S2 and S. arabica). Pearson correlation analysis indicated nitrogen species [NH4+ and ∑(NO2?+NO3? )] negatively correlated with the diversity indices of anammox bacteria. Canonical correspondence analysis (CCA) showed that salinity, inorganic nitrogen [NH4+, ∑(NO2?+NO3?)], and ratio of NH4+/∑(NO2? +NO3?) significantly affected the bacterial community compositions. Results collectively support that the community composition of anammox bacteria can serve as a bio-indicator to the anthropogenic terrestrial N input or pollution.  相似文献   

11.
Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered new microbial process performed by the Candidatus Methylomirabilis oxyfera with an unusual intra-aerobic pathway, but there is no report about n-damo bacteria in marine environments. M. oxyfera-like sequences were successfully retrieved for the first time from both surface and subsurface ocean sediments of the South China Sea (SCS) using both 16S rRNA and pmoA genes as biomarkers and PCR amplification in this study. The majority of M. oxyfera-like 16S rRNA gene-based PCR amplified sequences from the SCS sediments formed a new group distinctively different from those detected in freshwater habitats and the information is consistent phylogenetically with those obtained from the pmoA gene. This study showed the existence of n-damo in ocean sediments and suggests that marine sediments harbor n-damo phylotypes different from those in the freshwater. This finding here expands our understanding on the distribution of n-damo bacteria to marine ecosystem and implies their potential contribution to the marine C and N cycling.  相似文献   

12.
Marine sponges constitute major parts of coral reefs and deep‐water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm?3 sponge day?1 were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia‐oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite‐oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes (15NO3 and 15NH4+) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm?3 sponge day?1 and 3 nmol N cm?3 sponge day?1 respectively. Accordingly, sequences closely related to ‘Candidatus Scalindua sorokinii’ and ‘Candidatus Scalindua brodae’ were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge–microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as so far unrecognized nitrogen sinks in the ocean. In certain marine environments with high sponge cover, sponge‐mediated nitrogen mineralization processes might even be more important than sediment processes.  相似文献   

13.
The anaerobic oxidation of ammonium (anammox) contributes significantly to the global loss of fixed nitrogen and is carried out by a deep branching monophyletic group of bacteria within the phylum Planctomycetes. Various studies have implicated anammox to be the most important process responsible for the nitrogen loss in the marine oxygen minimum zones (OMZs) with a low diversity of marine anammox bacteria. This comprehensive study investigated the anammox bacteria in the suboxic zone of the Black Sea and in three major OMZs (off Namibia, Peru and in the Arabian Sea). The diversity and population composition of anammox bacteria were investigated by both, the 16S rRNA gene sequences and the 16S-23S rRNA internal transcribed spacer (ITS). Our results showed that the anammox bacterial sequences of the investigated samples were all closely related to the Candidatus Scalindua genus. However, a greater microdiversity of marine anammox bacteria than previously assumed was observed. Both phylogenetic markers supported the classification of all sequences in two distinct anammox bacterial phylotypes: Candidatus Scalindua clades 1 and 2. Scalindua 1 could be further divided into four distinct clusters, all comprised of sequences from either the Namibian or the Peruvian OMZ. Scalindua 2 consisted of sequences from the Arabian Sea and the Peruvian OMZ and included one previously published 16S rRNA gene sequence from Lake Tanganyika and one from South China Sea sediment (97.9-99.4% sequence identity). This cluster showed only 相似文献   

14.
Previously available primer sets for detecting anaerobic ammonium-oxidizing (anammox) bacteria are inefficient, resulting in a very limited database of such sequences, which limits knowledge of their ecology. To overcome this limitation, we designed a new primer set that was 100% specific in the recovery of approximately 700-bp 16S rRNA gene sequences with >96% homology to the "Candidatus Scalindua" group of anammox bacteria, and we detected this group at all sites studied, including a variety of freshwater and marine sediments and permafrost soil. A second primer set was designed that exhibited greater efficiency than previous primers in recovering full-length (1,380-bp) sequences related to "Ca. Scalindua," "Candidatus Brocadia," and "Candidatus Kuenenia." This study provides evidence for the widespread distribution of anammox bacteria in that it detected closely related anammox 16S rRNA gene sequences in 11 geographically and biogeochemically diverse freshwater and marine sediments.  相似文献   

15.
In the global ocean nitrogen cycle, the anaerobic ammonium-oxidizing (anammox) process is recognized as important. In this study, we established an enrichment culture of marine anammox bacteria (MAB) in a column-type reactor. The reactor, which included a porous polyester non-woven fabric that had been placed at the sea floor in advance for enrichment, was continuously fed with NH4Cl and NaNO2 for more than 1 year. Anammox activity in the MAB reactor was confirmed by 15N tracer analysis using 15NH4Cl and Na14NO2. We identified two 16S rRNA genes in the amplified DNA fragments derived from MAB, which were highly homologous with those from Candidatus “Scalindua wagneri” and an uncultured planctomycete clone. Fluorescence in situ hybridization analysis using an anammox-specific probe also confirmed that MAB predominated in the reactor. To our knowledge, this is the first report on the establishment of an enrichment culture of anammox bacteria from the marine environment using a continuous culture system.  相似文献   

16.
Two 16S rRNA gene-based PCR primer sets (Brod541F/Amx820R and A438f/A684r) for detecting anammox bacteria were compared using sediments from Mai Po wetlands (MP), the South China Sea (SCS), a freshwater reservoir (R2), and sludge granules from a wastewater treatment plant (A2). By comparing their ability in profiling anammox bacteria, the recovered diversity, community structure, and abundance of anammox bacteria among all these diverse samples indicated that A438f/A684r performed better than Brod541F/Amx820R in retrieving anammox bacteria from these different environmental samples. Five Scalindua subclusters (zhenghei-I, SCS-I, SCS-III, arabica, and brodae) dominated in SCS whereas two Scalindua subclusters (zhenghei-II and wagneri) and one cluster of Kuenenia dominated in MP. R2 showed a higher diversity of anammox bacteria with two new retrieved clusters (R2-New-1 and R2-New-2), which deserves further detailed study. The dominance of Brocadia in sample A2 was supported by both of the primer sets used. Results collectively indicate strongly niche-specific community structures of anammox bacteria in different environments, and A438f/A684r is highly recommended for screening anammox bacteria from various environments when dealing with a collection of samples with diverse physiochemical characteristics.  相似文献   

17.
An anaerobic ammonium-oxidation (anammox) reactor was operated for more than 500 days and the anammox activity of the biomass in the reactor reached 0.58 kg Ntotal/kg VSS d. The removal ratios of NO2-N to NH4+-N in both reactor and activity tests were nearly 1.1. The bacterial diversity in the reactor was investigated by analysis of 16S rRNA gene clone libraries and quantitative real-time PCR (qPCR). The analysis showed that more than half of the clones in the library were affiliated to recognized filamentous bacteria. The previously recognized anammox bacterium (AnAOB) Candidatus Kuenenia stuttgartiensis was only detected by using a Planctomycetes-specific 16S rRNA gene primer set. However, at least two different types of AnAOB were detected by the primer set targeting the hydrazine-oxidizing enzyme gene (hzo). The aerobic ammonium-oxidizing bacteria (AAOB) Nitrosomonas europaeaeutropha group, which is widely detected in oxygen-limited environments, was also found in this reactor. The result of qPCR indicated that AnAOB comprised 16% of the community population while AAOB comprised less than 1% in the reactor.  相似文献   

18.
To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater–brine haloclines of the deep anoxic hypersaline basins Bannock and L’Atalante were sampled in intervals of 10 cm with increasing salinity. 15N isotope pairing incubation experiments showed the production of 29N2 and 30N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L’Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L?1 day?1 while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L’Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus ‘Candidatus Scalindua’ and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. ‘Scalindua brodae’ like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L’Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.  相似文献   

19.
We identified 16S rRNA gene sequences in sediment samples from Ago Bay in Japan, forming a new branch of the anammox group or closely related to anaerobic ammonium oxidizing (anammox) bacterial sequences. Anammox activity in the sediment samples was detected by 15N tracer assays. These results, along with the results of fluorescence in situ hybridization (FISH) analysis, suggest the presence of anammox bacteria in the marine sediments.  相似文献   

20.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号