首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n?=?6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+?G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C?=?O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity.
Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity
  相似文献   

2.
A novel type of trivalent BNg five-membered cational species B5Ngn3+(Ng = He~Rn, n = 1~5) has been found and investigated theoretically using the B3LYP and MP2 methods with the def2-QZVPPD and def2-TZVPPD basis sets. The geometry, harmonic vibrational frequencies, bond energies, charge distribution, bond nature, aromaticity, and energy decomposition analysis of these structures were reported. The calculated B?Ng bond energy is quite large (the averaged bond energy is in the range of 209.2~585.76 kJ mol-1) for heavy rare gases and increases with the Ng atomic number. The analyses of the molecular wavefunction show that in the BNg compounds of heavy Ng atoms Ar~Rn, the B?Ng bonds are of typical covalent character. Nuclear independent chemical shifts display that both B53+ and B5Ngn3+(n=1~5) have obvious aromaticity. Energy decomposition analysis shows that these BNg compounds are mainly stabilized by the σ-donation from the Ng valence p orbital to the B53+ LUMO. These findings offer valuable clues toward the design and synthesis of new stable Ng-containing compounds.  相似文献   

3.
The present study reports the geometries, electronic structures, growth behavior, and stabilities of neutral and ionized copper-doped germanium clusters containing 1–20 Ge atoms within the framework of linear combination of atomic orbitals density functional theory (DFT) under the spin-polarized generalized gradient approximation. It was found that Cu-capped Ge n (or Cu-substituted Ge n+1) and Cu-encapsulated Ge n clusters mostly occur in the ground state at a particular cluster size (n). In order to explain the relative stabilities of the ground-state clusters, parameters such as the average binding energy per atom (BE), the embedding energy (EE), and the fragmentation energy (FE) of the clusters were calculated, and the resulting values are discussed. To explain the chemical stabilities of the clusters, parameters such as the energy gap between the highest occupied and the lowest unoccupied molecular orbitals (the HOMO–LUMO gap), the ionization energy (IP), the electron affinity (EA), the chemical potential (μ), the chemical hardness (η), and the polarizability were calculated, and the resulting values are also discussed. Natural atomic orbital (NAO) and natural bond orbital (NBO) analyses were also used to determine the electron-counting rule that should be applied to the most stable Ge10Cu cluster. Finally, the relevance of the calculated results to the design of Ge-based superatoms is discussed.
Figure Contributions of the valance orbitals of the Ge and Cu atom(s) to the HOMO of the ground-state icosahedral Ge10Cu cluster obtained from NBO analysis. The numbers below the clusters represent the occupancies of the HOMO orbitals
  相似文献   

4.
We present the results of simulations of a CCl4 monolayer adsorbed on a graphite surface. The CCl4 molecule was represented either by a shapeless superatom or by its atomic sites. The simulations were carried out over a large range of temperatures, from 20 K up to 340 K. We address the following problems: (1) the influence of molecular shape on the structure and stability of phases (particularly at low temperatures), and (2) the influence of the graphite corrugation on layer stability and mechanism of phase transitions. In particular, we discuss the possibility and conditions of the appearance of hexatic phase in the system. Figure Temperature dependence of Φ6 order parameter for CCl4 monolayer adsorbed onsmooth and corrugated surfaces, in the spherical Lennard Jones (LJ) approximation.For comparison, the order parameter calculated for MacDonald’s five-site potential is also presented  相似文献   

5.
The physical ends of mammalian and other vertebrate chromosomes consist of tandemly repeated (TTAGGG)(n) hexamers, nucleating a specialized telomeric structure. However, (TTAGGG)(n) sequences can also occur at non-telomeric sites, providing important insights into karyotypic evolution. By fluorescence in situ hybridization (FISH) we studied the chromosomal distribution of (TTAGGG)(n) sequences in 16 bird species, representing seven different orders. Many species, in particular the ratites, display (TTAGGG)(n) hybridization signals in interstitial and centromeric regions of their macrochromosomes in addition to the typical telomeric signals. In some but not all species these non-telomeric sites coincide with C-band-positive heterochromatin. The retention and/or amplification of telomeric (TTAGGG)(n) repeats at interstitial and centromeric sites may indicate the fusion of ancestral chromosomes. Compared with the macrochromosomes, the microchromosomes of most species are enriched with (TTAGGG)(n) sequences, displaying heterogeneous hybridization patterns. We propose that this high density of (TTAGGG)(n) repeats contributes to the exceptionally high meiotic recombination rate of avian microchromosomes.  相似文献   

6.
Metal-coordinated nitrogen-doped carbons are highly active in promoting electrochemical oxygen reduction reactions (ORR). The detailed kinetic and thermodynamic ORR behavior on three different FeN2-graphene [FeN2–G (A), (B) and (C)] structures was investigated in this work. The results show that formation of these FeN2–G configurations is energetically favorable; however, not all of them are effective for ORR. The higher HOMO energy and smaller HOMO–LUMO gap of FeN2–G (A) and (C) make them have strong adsorption strengths to ORR intermediates, which leads to occupation the active sites on the catalysts during ORR, and thus loss of catalytic activity. Examination of the results of ?G of each reduction step also drew the same conclusion. The ?G of the elementary steps of the ORR at zero electrode potential vs. standard hydrogen electrode are downhill only on FeN2–G (B). Throughout the entire four-electron ORR, the reduction of O to OH displays the highest reaction barrier. When the potential is >0.19 V, the reduction of OH species into water is uphill. Therefore, ORR activity is limited by two rate-determining steps on FeN2–G (B) at high potential: O and OH reduction steps.  相似文献   

7.
This study was focused on the role of two types of diametrically different carbon sources, n-alkanes represented by a mixture of dodecane–hexadecane, and phenol on modification of the cell surface hydrophobicity. Capabilities of using either solely hydrocarbons or hydrocarbons in the mixture with phenol as well as phenol itself by yeast species Candida maltosa, Yarrowia lipolytica and Pichia guilliermondii were investigated. Studies were complemented by cell biomass formation measurements. The corresponding cell surface hydrophobicity was assessed by microbial adhesion to the hydrocarbon test (MATH). Degradation of phenol was examined using GC-SPE technique, whereas hydrocarbons were extracted prior to gravimetric determination. Results obtained indicated that the hydrophobic or hydrophilic nature of the carbon source had significant influence on the cell surface hydrophobicity. Although the results differed for some individual yeast strains, the generalization can be made that there is the correlation between the best hydrocarbon and phenol degradation and corresponding cell wall properties of the yeast examined.  相似文献   

8.
Quantum chemical calculations of the structures and stabilities of the title series at the CCSD(T) theoretical level are performed. Laplacian, electron density deformation, electron localization function and reduced density gradient analysis are investigated to explore the nature of the interaction. The results show that a covalent contribution occurs in the Kr-M2+ bonding.  相似文献   

9.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

10.
The adsorption processes of elemental lead on carbonaceous surfaces which adsorbed CO/CO2/NO flue gases were investigated to understand the effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces with density functional theory. All calculations including optimizations, energies, and frequencies were conducted at B3PW91 density functional theory level, utilizing SDD basis set for lead and 6-31G(d) Pople basis set for other atoms. The results indicate that CO, CO2, and NO can promote the adsorption of elemental lead on the carbonaceous surface, but probably compete for adsorption sites with elemental lead. The promotion effects on adsorption can be attributed to active sites on the carbonaceous surface rather than flue gas adsorption on the carbonaceous surface. In addition, the adsorption order of three kinds of flue gas on the carbonaceous surface is CO2?>?NO?>?CO?>?Pb on average. Furthermore, the enhancement order of three kinds of flue gas on the elemental lead adsorption on carbonaceous surfaces is CO-CS?>?CO2-CS?>?NO-CS?>?CS in general. In particular, atomic charge and adsorption energy have good linear relationship in the process of elemental lead adsorption.
Graphical Abstract Competitive adsorption between flue gas and elemental lead on carbonaceous surfaces.
  相似文献   

11.
In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2.  相似文献   

12.
Density functional theory (DFT) calculations were used to study the effect of scandium doping on the structural, energetic, electronic, linear and nonlinear optical (NLO) properties of Be12O12, Mg12O12 and Ca12O12 nanoclusters. Scandium (Sc) doping on nanoclusters leads to narrowing of their E g, which enhances their conductance greatly. Also, the polarizability (α) and first hyperpolarizability (β0) of nanoclusters were dramatically increased as Be, Mg or Ca atoms are substituted with a Sc atom. Among all clusters, α and β0 values for Sc-doped Ca12O12 were the largest. Consequently, the effect of the doping atom, as well as of cluster size, on electronic and optical properties was explored. Time dependent (TD)-DFT calculations were also carried out to confirm the β0 values; the results show that the higher value of first hyperpolarizability belongs to Sc-doped Ca12O12, which has the smallest transition energy (ΔEgn). The results obtained show that these clusters can be candidates for using in electronic devices and NLO materials in industry.  相似文献   

13.
It is plausible that the nutritional quality of C3 plants will decline more under elevated atmospheric CO2 than will the nutritional quality of C4 plants, causing herbivorous insects to increase their feeding on C3 plants relative to C4 plants. We tested this hypothesis with a C3 and C4 grass and two caterpillar species with different diet breadths. Lolium multiflorum (C3) and Bouteloua curtipendula (C4) were grown in outdoor open top chambers at ambient (370 ppm) or elevated (740 ppm) CO2. Bioassays compared the performance and digestive efficiencies of Pseudaletia unipuncta (a grass-specialist noctuid) and Spodoptera frugiperda (a generalist noctuid). As expected, the nutritional quality of L. multiflorum changed to a greater extent than did that of B. curtipendula when grown in elevated CO2; levels of protein (considered growth limiting) declined in the C3 grass, while levels of carbohydrates (sugar, starch and fructan) increased. However, neither insect species increased its feeding rate on the C3 grass to compensate for its lower nutritional quality when grown in an elevated CO2 atmosphere. Consumption rates of P. unipuncta and S. frugiperda were higher on the C3 grass than the C4 grass, the opposite of the result expected for a compensatory response to the lower nutritional quality of the C4 grass. Although our results do not support the hypothesis that grass-specialist insects compensate for lower nutritional quality by increasing their consumption rates more than do generalist insects, the performance of the specialist was greater than that of the generalist on each grass species and at both CO2 levels. Mechanisms other than compensatory feeding, such as increased nutrient assimilation efficiency, appear to determine the relative performance of these herbivores. Our results also provide further evidence against the hypothesis that C4 grasses would be avoided by insect herbivores because a large fraction of their nutrients is unavailable to herbivores. Instead, our results are consistent with the hypothesis that C4 grasses are poorer host plants primarily because of their lower nutrient levels, higher fiber levels, and greater toughness.  相似文献   

14.
15.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

16.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

17.
The C2 fragmentation energies of the most stable isolated-pentagon-rule (IPR) isomers of the C80 and C82 fullerenes were evaluated with second-order Møller-Plesset (MP2) theory, density-functional theory (DFT) and the semiempirical self-consistent charge density-functional tight-binding (SCC-DFTB) method. Zero-point energy, ionization energy and empirical C2 corrections were included in the calculation of fragmentation energies for comparison with experimental C2 fragmentation energies of the fullerene cations. In the case of the most probable Stone-Wales pathway of C2 fragmentation of C80, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{80}}}} ^{ + } } \right)}\) agree well with experimental data, whereas in the case of C82 fragmentation, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{82}}}} ^{ + } } \right)}\) exceed by up to 1.2 eV the experimental ones, which suggests that other IPR isomers may be present in sufficient amounts in experimental samples. Computer-intensive MP2 calculations and DFT calculations with larger basis sets do not yield much improved C2 fragmentation energies, compared to those reported earlier with B3LYP/3-21G. On the other hand, semiempirical approaches such as SCC-DFTB, which are orders of magnitude less intensive, yield satisfactory fragmentation energies for higher fullerenes and may become a method of choice for routine calculations of fullerenes and carbon nanotubes.
Figure C2 fragmentation energies of C80 and C82 fullerenes have been calculated with B3LYP/6-31G* model chemistry, with semiempirical self-consistent-charge density-functional tight-binding (SCC-DFTB) method and with the more rigorous MP2 method. The influence of basis set extension and level of theory on the resulting fragmentation energies is discussed
  相似文献   

18.
THE prostaglandins (PG) are possible mediators of inflammation. Prostaglandins E and F are present in inflammatory exudates1–3 and could be related to the increase of collagen biosynthesis associated with inflammation. Vane and his colleagues4–6 recently observed that indomethacin, aspirin and sodium salicylate potently block the biosynthesis of prostaglandins. These anti-inflammatory drugs are also inhibitors of collagen biosynthesis7,8. Morphological studies9 have revealed increased deposition of collagen or collagen-related elements in organ cultures of chick embryo skin containing prostaglandins E1 and B1. We report here results which indicate stimulation of collagen biosynthesis by prostaglandins E1 and F evaluated by hydroxylation of proline and lysine and glycosylation of hydroxylysine in 10 day chick embryo tibiae.  相似文献   

19.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

20.
FoF1-ATP synthase is the nanomotor responsible for most of ATP synthesis in the cell. In physiological conditions, it carries out ATP synthesis thanks to a proton gradient generated by the respiratory chain in the inner mitochondrial membrane. We previously reported that isolated myelin vesicles (IMV) contain functional FoF1-ATP synthase and respiratory chain complexes and are able to conduct an aerobic metabolism, to support the axonal energy demand. In this study, by biochemical assay, Western Blot (WB) analysis and immunofluorescence microscopy, we characterized the IMV FoF1-ATP synthase. ATP synthase activity decreased in the presence of the specific inhibitors (olygomicin, DCCD, FCCP, valynomicin/nigericin) and respiratory chain inhibitors (antimycin A, KCN), suggesting a coupling of oxygen consumption and ATP synthesis. ATPase activity was inhibited in low pH conditions. WB and microscopy analyses of both IMV and optic nerves showed that the Inhibitor of F1 (IF1), a small protein that binds the F1 moiety in low pH when of oxygen supply is impaired, is expressed in myelin sheath. Data are discussed in terms of the role of IF1 in the prevention of the reversal of ATP synthase in myelin sheath during central nervous system ischemic events. Overall, data are consistent with an energetic role of myelin sheath, and may shed light on the relationship among demyelination and axonal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号