首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass release of parasitoids (Hymentoptera: Pteromalidae) is one possible control method of house flies (Musca domestica L.) on livestock farms. To improve the success of this method, however, there is a need for more detailed recommendations. In the present study, parasitism was evaluated in and around pens following release of the parasitoid Spalangia cameroni Perkins by hand and from containers. The study was conducted at conventional Norwegian pig farms with scattered breeding grounds for house flies. The experiment was carried out twice, with a total of seven trials of each release method followed by four weeks of monitoring parasitism by house fly sentinel pupae. No significant difference was found between the two release methods. Parasitism decreased with temperature (range 18–23°C) and was low on farms with few sites for the parasitoids to hide.  相似文献   

2.
The efficacy of using natural enemies to control pests under field conditions largely depends on their mobility and, more specifically, on their capacity to quickly locate pest infestation. For many natural enemies, for example parasitoids, mobility is directly related to flight aptitude, which is determined by the capacity and inclination of a species to engage in flight. In this study, we determined the various factors that affected flight performance of Microplitis mediator (Haliday) (Hymenoptera: Braconidae), using a computer-monitored flight mill. No differences were found in flight performance (i.e., flight distance, duration, speed) between both sexes of M. mediator, and flight capacity increased up to an age of 5–7 days followed by a gradual decline afterwards. For one-day-old female parasitoids, mean (±SE) flight distance and duration were 6.23 ± 0.88 km and 85.15 ± 14.44 min, respectively, with a maximum flight distance of 18.0 km. For male parasitoids, mean flight distance and duration were 5.27 ± 0.51 km and 85.74 ± 7.63 min, respectively. Mating status did not affect flight performance of males, while flight distance of four-day-old ovipositing M. mediator females was much lower than that of un-mated females of the same age. Un-mated adults flew most actively at 22–24°C and inclination to fly gradually declined with decreasing temperature. Temperatures above 26°C considerably reduced flight activity of M. mediator. Wasps engaged in normal flight under a broad range of relative humidity (RH) conditions, with an optimum RH range identified as 75–90%. Our research shows that M. mediator is a highly active parasitoid, because both sexes show great inclination to fly under a range of environmental conditions and flight capacity at different ages. Our results can help explain parasitoid performance in the field and provide baseline information to help guide augmentative releases. Handling editor: Dirk Babendreier.  相似文献   

3.
Seasonal relationships among stranded wrack quantity, seaweed fly abundances, and parasitism at the pupal stage were studied along three sandy beaches in central Japan. The seasonal occurrence patterns of puparia of seaweed flies Coelopa frigida and Fucellia spp. generally corresponded to seaweed deposition, which peaked in May–July and October–December. Parasitoids use fly puparia in these seasons. However, the occurrence of seaweed flies and their parasitoids varied among the three sandy beaches and did not correspond to the wrack amounts. These findings suggest that populations of seaweed flies and their parasitoids are seasonally, but not spatially, regulated by bottom‐up processes. The parasitoid assemblage of fly puparia was composed of two Aleochara (Coleoptera: Staphylinidae), two Trichopria (Hymenoptera: Diapriidae), and five pteromalid species (Hymenoptera), but the rate of parasitism was less than 20% and might have had little effect on fly populations.  相似文献   

4.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

5.
Parasitoids and neonicotinoids can both suppress economically harmful filth fly populations. However, sublethal effects of neonicotinoids have not previously been studied for commonly used species of filth fly parasitoids. Exposure to an LC50 of imidacloprid decreased the ability of surviving individuals of the parasitoid wasp Spalangia endius Walker (Hymenoptera: Pteromalidae) to kill house fly pupae under some conditions. In an unburied-hosts experiment, significantly more flies and fewer parasitoids emerged in the LC50 imidacloprid treatment versus the LC10 or controls. Parasitoid sex ratio and longevity were not affected. However, in a buried-hosts experiment, parasitoid and fly emergence were independent of treatment. ELISA (enzyme-linked immunosorbent assay) showed lower imidacloprid residues in or on parasitoids exposed to the media in which hosts were buried. Our findings suggest that substrate may reduce pesticides on biological control agents that burrow, making them more effective.  相似文献   

6.
Domestication of crop plants selects for numerous traits that often distinguish them dramatically from their wild progenitors. In some cases, these modifications lead to increased herbivory, by enhancing their attractiveness to herbivorous insects or reducing the efficiency of natural enemies, or both. This study investigated the effects of fruit enlargement on the olive (Olea europaea L.), the specialist olive fruit fly, Bactrocera oleae (Rossi), and its specialized larval parasitoids. Wild olive fruit are small (<2 mm pulp thickness) and the larval parasitoids associated with B. oleae have short ovipositors (<3 mm), while cultivated fruit are larger (4–8 mm pulp thickness). Female flies allocate more offspring to large than to small fruit within or across different-sized commercial cultivars, without reducing the fitness of their offspring. Fly larvae move deeper into the olive pulp with their increasing age and fruit size. In contrast, the specialist larval parasitoid, Psyttalia lounsburyi (Silvestri), more effectively parasitizes hosts in smaller than larger fruit. The inverse relationship between the performance of the fly and its co-evolved parasitoids on fruit of increasing sizes indicates that olive cultivation favors the success of the fly by providing a better food resource and more enemy-free space. These findings offer some explanation for the failure of the decades-old classical biological efforts to manage B. oleae using specialized larval parasitoids in the Mediterranean Basin and provide further evidence that crop domestication can alter host–parasitoid interactions.  相似文献   

7.
Summary The relative importance of phylogenetic affinity of hosts versus their ecological characteristics in determining the composition of their parasitoid complexes was examined using the parasitoid complexes of six species of frugivorous fruit flies from Central Europe. The hosts were four Rhagoletis and two other trypetine species, ranging in their relatedness from host races to members of different genera. They also differed in ecological characteristics, utilizing host plants of three different families, and developing either as pulp- or seedfeeders inside the host fruit. These features made it feasible to test the following pair of hypotheses. The ecological hypothesis predicts that ecological traits such as host-plant and fruit fly phenologies and host-fruit texture should be more important for the composition of parasitoid complexes than the taxonomic relatedness of the fly species. Assuming that ecological relationships do not parallel phylogenetic ones, the alternative phylogenetic hypothesis predicts the opposite. In fruit and soil samples, taken between 1983 and 1989, three guilds of parasitoids comprising 20 species were found: guild 1 — koinobiotic larval parasitoids (e.g. Opius spp., which attack the host larvae but develop inside the host puparia); guild 2 — idiobiotic larval parasitoids (e.g. Pteromalus spp., which consume the host larvae at once); and guild 3 — idiobiotic puparium parasitoids (e.g. Phygadeuon spp.). Although some results support the phylogenetic hypothesis, the majority of results support the ecological hypothesis.  相似文献   

8.
Diachasmimorpha longicaudata (Ashmead) parasitoids were released by air on a weekly basis over 1600 ha of commercial mango orchards, backyard orchards, and patches of native vegetation, at a density of ca. 940 parasitoids/ha. Releases were made during 2 consecutive years, beginning at flower onset and lasting until the end of the production cycle. Two areas, 7 km apart, were compared. In one area parasitoids were released, whereas the other area was used as a control. During the 2nd year treatments were reversed. Fruit was sampled in commercial mango orchards and in backyard orchards to assess levels of parasitism in fruit fly larvae. Highly significant differences in percentage parasitism were found in release and control zones in backyard orchards. Furthermore, trapping results indicated that D. longicaudata releases were associated with ca. 2.7-fold suppression of Anastrepha spp. populations in backyard orchards. Results suggest that suppression might be affected by environmental conditions and by the parasitoid:fly ratio achieved. Anastrepha obliqua McQuart populations were suppressed more effectively by use of parasitoids than those of Anastrepha ludens Loew, perhaps due to the type of host fruits used by each species. Augmentative parasitoid releases in marginal areas surrounding commercial orchards (backyard orchards, wild vegetation) can substantially suppress fly populations. Through this approach, the number of flies that later move into commercial orchards can be significantly reduced. Such a strategy, when combined with sound orchard management schemes, can allow growers to produce clean fruit without the need to resort to the widespread use of insecticides.  相似文献   

9.
The field cricket Teleogryllus oceanicus has been introduced to Hawaii, where it is parasitized by an acoustically orienting parasitoid fly, Ormia ochracea. Previous work showed that call parameters from parasitized populations differ from those in unparasitized populations in a direction expected if selection by flies is occurring. Here we examined songs of males collected in the field and compare calling song characters of crickets later found to harbor parasitoid larvae with those of males free of parasitoids. The two groups differ significantly in several song characteristics, particularly the trill-like long chirp given at the beginning of each song. Males with longer long chirps containing shorter interpulse intervals are more likely to be parasitized, suggesting that the flies find such males more attractive. Depending on the traits females prefer, sexual selection may oppose natural selection in altering T. oceanicus song in parasitized populations.  相似文献   

10.
Tropical trees can provide various ecological services to adjacent agricultural environments, including maintaining and amplifying the numbers of beneficial insects. In Mexico, certain tree species harbor a diverse guild of hymenopteran parasitoids that attack pest fruit flies (Diptera: Tephritidae) and are at the same time sources of valuable hardwood timber. Indigenous trees and their associated fauna are slowly disappearing due to forest clearance and the expansion of crop monocultures. Here we explore the relationship among pest and non-pest fruit flies, their fruit-hosts and parasitoids in the context of mango orchards and surrounding patches of uncultivated vegetation and propose a novel mechanism to use these associations in favor of conservation purposes and pest management. Trees of conservation biological control interest are classified as: (1) parasitoid multiplier plants, species that serve as alternate hosts for key fruit fly pests when their commercial hosts are not available, but in which they are unusually vulnerable to parasitism; (2) parasitoid reservoir plants, native or introduced trees in whose fruits non-pest fruit flies serve as hosts to generalist parasitoids that are able to attack pest tephritids in other species of commercially grown fruit; and (3) pest-based parasitoid reservoir plants, native or introduced species that are not economically important locally, but which harbor fruit flies that would be pests in other circumstances and that serve as hosts for parasitoids of the important pests in the vicinity. Protection, multiplication and dissemination of such tree species has the potential to increase the number of naturally produced fruit fly parasitoids and could assist in the management of tephritid pests in areas where destruction of forests has impoverished the historical sources of fruit fly natural enemies. Tropical forest conservation may help resource-poor farmers reduce crop losses, increase biodiversity within fruit-growing regions and conserve native forests for both conservation purposes and commercial use of native hardwoods.  相似文献   

11.
Fruit flies are pests of great economic importance due to their quarantine pest status and losses recorded in West Africa. An inventory of parasitoids associated with fruit flies in mangoes, guavas, cashew, pepper and major wild fruit crops was carried out in northern-central Benin in 2005, 2006, and 2008. Tephritid parasitoids reared from field-collected fruits belonged to three families: Braconidae (97.2%), Eulophidae (1.6%) and Pteromalidae (1.2%). Fopius caudatus (Szépligeti) accounted for 73.8% of all the parasitoids and therefore was the most abundant and widely distributed parasitoid. The parasitism rate was 7.7%, with the highest recorded in wild fruit crop habitat. Ceratitis cosyra (Walker) (77%) was the fly host most commonly reared from fruits that produced F. caudatus. The recently introduced pest Bactrocera invadens Drew Tsuruta and White was rarely parasitized and only by Pachycrepoideus vindemmiae (Rondani) (Hymenoptera: Pteromalidae) at this time. This is the first report of the inventory of one native parasitoid species from B. invadens in Africa, especially in West Africa.  相似文献   

12.
The house fly (Musca domestica L.) alimentary canal was evaluated for the potential of horizontal transfer of tetM on plasmid pCF10 among Enterococcus faecalis. Two sets of experiments were conducted: (1) house flies without surface sterilization and (2) surface-sterilized flies. Both sets of flies were exposed to E. faecalis OG1RF:pCF10 as donor for 12 h and then E. faecalis OG1SSp as recipient for 1 h. Another group of flies received the recipient first for 12 h followed by exposure to the donor strain for 1 h. House flies were screened daily to determine the donor, recipient, and transconjugant bacterial load for up to 5 days. In addition, the sponge-like mouth parts used for food uptake (labellum) of surface-sterilized house flies were removed and analyzed for donors, recipients, and transconjugants, separately. In both groups of flies (n = 90 flies/group), transfer occurred within 24 h after exposure with a transconjugant/donor rate from 8.6 × 10−5 to 4.5 × 101. Transconjugants were also isolated from the house fly labellum. Our data suggest that the house fly digestive tract provides a suitable environment for horizontal transfer of conjugative plasmids and antibiotic resistance genes among enterococci. Our results emphasize the importance of this insect as a potential vector of antibiotic-resistant bacterial strains.  相似文献   

13.
《Biological Control》2006,36(2):224-231
Area-wide control of the Mediterranean fruit fly (=medfly), Ceratitis capitata (Wiedemann), typically involves sterile insect technique (=SIT), and at present the “Temperature Sensitive Lethal” (=TSL) strain is commonly mass-reared for such releases. In theory, and with some experimental support, the augmentative addition of parasitoids to sterile releases can suppress pest populations to a greater extent than either technique alone. The efficacies of TSL males, parasitoids, and TSL males and parasitoids were compared in large field cages erected over coffee grown at four locations and three altitudes (relatively high, medium and low for the crop) in Guatemala. Two species of opiine braconid parasitoids, the larval–pupal parasitoid Diachasmimorpha krausii (Fullaway) and the egg-pupal parasitoid Fopius arisanus (Sonan), were released either together or in combination with sterile males into cages along with fertile medflies. Results of this evaluation were assessed by comparing the number of pupae and adult insects that completed development (F1 generation) as a result of the reproduction of a parental generation released into each field cage. The TSL males significantly suppressed F1 fly populations but only in one of four study sites. However, the inclusion of F. arisanus and D. krausii always provided significant suppression and the effect was frequently substantial. In one site there was a significant interaction between the capacity of sterile males and parasitoids to suppress caged fly populations. There was no effect of host-fruit abundance on the numbers of flies recovered, however, there were significant interactions between maximum and minimum temperatures and the effects of sterile males and parasitoids, respectively. The results suggest that mass-reared sterile medflies and biological control agents should be tested for both consistent sexual-quality and their ability to perform in the various environments in which they will be released.  相似文献   

14.
The larval–pupal endoparasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is currently the most commonly employed biological control agent against Tephritid fruit flies in the Americas. However, this parasitoid remains largely ignored and is not used in many regions, including the Mediterranean Basin. In this study, the potential of D. longicaudata as a biocontrol agent against the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae) was addressed in an area of eastern Spain (the Valencian community). The parasitic activity of parasitoids and the effects of climatic conditions were evaluated throughout a 1‐year period in field‐cage experiments in which parasitoids were confined with apples artificially infested with medfly larvae. The following parameters were calculated and related statistically to several environmental conditions: the parasitism rate, the induced mortality and progeny sex ratio. The results show that D. longicaudata is able to parasitize medfly larvae throughout the year under semi‐natural conditions. Important fluctuations in the parasitism rate (from almost zero to 42%) and the induced mortality (from 6% to 80%) were partially influenced by climatic conditions. The parasitism rate increased with mean temperature and decreased with mean relative humidity, while the induced mortality decreased with minimum relative humidity. The optimal climatic conditions for the activity of the parasitoid were a mean temperature of 16–24°C combined with a relative humidity of 45%–60%. Overall, these results suggest that reduction in the medfly population due to D. longicaudata activity is feasible and provide information about the optimal time period for parasitoid release in the field. In conclusion, D. longicaudata has a significant potential to control C. capitata in the Mediterranean region.  相似文献   

15.
Field experiments and surveys were conducted to evaluate the efficacy of releasing Fopius arisanus (Sonan) and Psyttalia fletcheri (Silvestri) parasitoids for suppression of Bactrocera cucurbitae (Coquillett) infesting wild Coccinia grandis L. In 2003 and 2004, P. fletcheri releases combined with natural emergence from wild fly populations resulted in better fly suppression, compared to the control site. While P. fletcheri developed freely on melon fly, F. arisanus was less successful at producing its own progeny, yet causing mortality and a twofold decrease in pupae recovered from ivy gourds. Concurrent releases of both parasitoids exerted a compounded suppressive effect on the melon fly population 2–3 times higher than during the pre-release phase. A similar, less obvious, pattern occurred in 2004, due to reduction of the ivy gourd fruit canopy. In 2005, only P. fletcheri was released, with greatly reduced impact, due to ivy gourd destruction and by growers leaving crop culls in fields, producing large numbers of melon flies unaffected by parasitoid releases.  相似文献   

16.
House fly, Musca domestica L., pupae were exposed to six species of pteromalid parasitoids, Muscidifurax zaraptor Kogan and Legner, M. raptor Girault and Sanders, M. raptorellus Kogan and Legner, Pachycrepoideus vindemiae (Rondani), Spalangia nigroaenea Curtis, and Urolepis rufipes Ashmead. Exposures were made for 48 h at six parasitoid-to-host ratios to measure the effect of parasitoid density on parasitoid-induced mortality (PIM) of hosts (excluding mortality as measured by parasitoid emergence). PIM was evident at all parasitoid-to-host ratios for all six species. Fly eclosion declined with a corresponding increase in the parasitoid-to-host ratio; the reverse was generally true for PIM. Parasitoid emergence increased initially with a corresponding increase in the parasitoid-to-host ratio to a point (depending on the parasitoid species), but then declined. The three Muscidifurax spp. and P. vindemiae exhibited similar behavior and generally avoided previously stung hosts until ovipositional restraints broke down at the higher parasitoid-to-host ratios. S. nigroaenea and U. rufipes exhibited little ovipositional restraint, resulting in a high proportion of PIM of hosts. Understanding factors that influence PIM will provide better evaluations of field releases of parasitoids to control flies and will aid in the development of the most economic procedures for large scale rearing of pteromalid parasitoids.  相似文献   

17.
《Biological Control》2013,66(3):348-356
The microbial biological control potential of three strains of Beauveria bassiana sensu lato originally isolated from the shore fly Scatella tenuicosta (Diptera: Ephydridae) was assessed in a series of laboratory bioassays. Comparisons were made to two commercially-available strains of B. bassiana. Two of the shore fly strains proved 27–67 times more virulent than the commercial strains in terms of LC50 (14–17 vs. 458–942 conidia/mm2) and killed shore flies more rapidly. B. bassiana s. l. strain ST1 exhibited a mass production capacity comparable to the commercial B. bassiana stain GHA, producing 2.8 × 1012 conidia/kg barley-based solid substrate in ventilated mushroom spawn bags. The shore fly strains of Beauveria sporulated on a higher percentage of killed adult shore flies and produced substantially greater numbers of conidia per cadaver than the commercial strains, indicating that these pathogens are well adapted to this host. Female shore flies treated with strain ST1 survived for only 5 days, with longevity being reduced by 8–10 days compared to control insects. This reduction in survival had a large impact on total lifetime egg production, reducing it by 78–88%, depending on the time of treatment relative to the pre-oviposition period. However, fungal growth within infected female shore flies had no effect on egg production or egg viability until the day before the flies succumbed to mycosis (day 4 post-inoculation). As a consequence, the intrinsic rate of shore fly population increase and population doubling time were little affected by fungal infection (0.4357 vs. 0.4152 and 1.6 vs. 1.7 days for control vs. Beauveria-treated populations, respectively). These findings underscore the challenges involved with use of slow-acting pathogens for control of highly fecund greenhouse pests and the fundamental necessity of integrating these agents into integrated pest management systems.  相似文献   

18.
Agromyzid flies, also known as leafminer flies, are one of the most serious insect pests that infest various plants. An agromyzid fly Japanagromyza tokunagai lays eggs in the ovaries of various Japanese orchids during or shortly after anthesis. Consequently, seed predation by J. tokunagai has the potential to severely limit the reproduction of many endangered orchids in Japan. While agromyzid populations tend to be suppressed by rich communities of natural parasitoids, such parasitoids have yet to be reported. Here we report Pediobius metallicus as the first record of a parasitoid of J. tokunagai. It is highly unusual to find parasitoids infesting J. tokunagai, possibly because the fly is protected by the thick wall and three-dimensional structure of orchid capsule. Pediobius metallicus may play an important role in suppressing J. tokunagai population at least in our study site.  相似文献   

19.
In the state of Veracruz, Mexico, fruits from 38 sites at various altitudes were collected monthly over a period of 2 years, and the tephritid fruit flies of the genus Anastrepha and associated parasitoids that emerged from these fruits were identified and counted. Of the 26 species of fruits that contained Anastrepha larvae, 18 species also contained a total of 10 species of Anastrepha parasitoids. These consisted of 4 native and 1 exotic species of opiine braconid larval–pupal parasitoids, 2 native species of eucoilid larval–pupal parasitoids, 1 exotic species of eulophid larval–pupal parasitoid, 1 exotic species of pteromalid pupal parasitoid, and 1 native species of diapriid pupal parasitoid. Overall parasitism (including flies from fruit species that bore no parasitoids) was 6% and was greatest, 16%, at 600–800 m in altitude. The relative contributions of individual parasitoid species to overall parasitism were frequently influenced by both the altitude (and correlated changes in temperature and precipitation) and the species of plant in which the Anastrepha larvae were found. This was particularly the case among the more abundant and widespread Braconidae. To distinguish the role of altitude from that of the distributions of the host plants, these braconids were examined in 4 individual species of fruit that grew over a broad range of altitudes. In guava (Psidium guajava L.) and “jobo” (Spondias mombin L.) the parasitoid Doryctobracon areolatus (Szepligeti) was relatively more common at low altitudes. Its congener, Doryctobracon crawfordi (Viereck), was relatively more abundant at high altitudes in sour orange (Citrus aurantium L.). Utetes anastrephae (Viereck) became relatively more common at higher altitudes in S. mombin, whereas Diachasmimorpha longicaudata (Ashmead) tended to become relatively rare at the highest altitudes in C. aurantium, but increased at high altitudes in P. guajava compared to other braconids. Different altitudinal patterns of abundance in different fruits suggests the importance of both biotic and abiotic factors in parasitoid distributions. We discuss the effect of an expanding agricultural frontier on parasitoid abundance and relate our findings to the design of a fruit fly biological control program that tailors mass releases to parasitoid climate preferences.  相似文献   

20.
Diachasmimorpha longicaudata is a koinobiont larval parasitoid that is currently used to control fruit flies of the genera Anastrepha, Ceratitis and Bactrocera. In the rearing process, a fraction of the host larvae that are exposed to parasitoids escape from parasitism and develop into viable and fertile flies. This creates the need to eliminate emerging flies before the parasitoids are shipped for release, increasing costs due to additional handling steps. Exposure of fly eggs or larvae to gamma-irradiation before they are parasitised has been used to reproductively sterilise hosts, or even inhibit their emergence. Our aim was to determine whether X-ray radiation applied to Anastrepha fraterculus third instar larvae before they are exposed to parasitoids, inhibits fly emergence in non-parasitised larvae without affecting the performance of the parasitoids that emerge from parasitised larvae. Three X-ray doses: 6250.2 R, 8333.6 R and 10417 R (equivalent to 60, 80 and 100 Gy, respectively) and one γ-ray dose (100 Gy) were tested. Fly emergence decreased with increasing doses of radiation, showing null values for the higher X-ray dose and the dose of 100 Gy. Irradiation showed either no impact or a positive effect on parasitism rate and fecundity. Sex rate was biased towards females in almost every dose. We conclude that the two types of radiation evaluated here were equally effective in suppressing fly emergence with no detrimental effects on the biological quality of the produced parasitoids. X-rays offer an alternative method of irradiation than the conventional radiation source, i.e. γ-rays. These results represent a significant improvement in the development of a biological control programme against A. fraterculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号