首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetushkin EIu 《Genetika》2011,47(11):1451-1472
The supplementary historical discipline genealogy is also a supplementary genetic discipline. In its formation, genetics borrowed from genealogy some methods of pedigree analysis. In the 21th century, it started receiving contribution from computer-aided genealogy and genetic (molecular) genealogy. The former provides novel tools for genetics, while the latter, which employing genetic methods, enriches genetics with new evidence. Genealogists formulated three main laws ofgenealogy: the law of three generations, the law of doubling the ancestry number, and the law of declining ancestry. The significance and meaning of these laws can be fully understood only in light of genetics. For instance, a controversy between the exponential growth of the number of ancestors of an individual, i.e., the law of doubling the ancestry number, and the limited number of the humankind is explained by the presence of weak inbreeding because of sibs' interference; the latter causes the pedigrees' collapse, i.e., explains also the law of diminishing ancestry number. Mathematic modeling of pedigrees' collapse presented in a number of studies showed that the number of ancestors of each individual attains maximum in a particular generation termed ancestry saturated generation. All representatives of this and preceding generation that left progeny are common ancestors of all current members of the population. In subdivided populations, these generations are more ancient than in panmictic ones, whereas in small isolates and social strata with limited numbers of partners, they are younger. The genealogical law of three generations, according to which each hundred years contain on average three generation intervals, holds for generation lengths for Y-chromosomal DNA, typically equal to 31-32 years; for autosomal and mtDNA, this time is somewhat shorter. Moving along ascending lineas, the number of genetically effective ancestors transmitting their DNA fragment to descendants increases far slower than the number of common ancestors, because the time to the nearest common ancestor is proportional to log2N, and the time to genetically effective ancestor, to N, where N is the population size. In relatively young populations, the number of genetically effective ancestors does not exceed the number of recombination hot spots, which is equal to 25000-50000. In ancient African populations with weaker linkage disequilibrium, their number may be higher. In genealogy, the degree of kinship is measured by the number of births separating the individuals under comparison, and in genetics, by Wright's coefficients of relationship (R). Genetic frames of a "large family" are limited by the average genomic differences among the members of the human population, which constitute approximately 0.1%. Conventionally it can be assumed that it is limited by relatives, associated with the members of the given nuclear family by the 7th degree of relatedness (R approximately 0.78%). However, in the course of the HapMap project it was established that 10-30% of pairs of individuals from the same population have at least one common genome region, which they inherited from a recent common ancestor. A nuclear family, if it is not consanguinous, unites two lineages, and indirectly, a multitude of them, constituting a "suprafamily" equivalent to a population. Some problems ofgenealogy and related historical issues can be resolved only with the help of genetics. These problems include identification of "true" and "false" Rurikids and the problem of continuity of the Y-chromosomal lineage of the Romanov dynasty. On the other hand, computer-aided genealogy and molecular genealogy seem to be promising in resolving genetic problems connected to recombination and coalescence ofgenomic regions.  相似文献   

2.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   

3.
North Greenland Polar Eskimos are the only hunter-gatherer population, to our knowledge, who can offer precise genealogical records spanning several generations. This is the first report from Eskimos on two key parameters in population genetics, namely, generation time (T) and effective population size (Ne). The average mother-daughter and father-son intervals were 27 and 32 years, respectively, roughly similar to the previously published generation times obtained from recent agricultural societies across the world. To gain an insight for the generation time in our distant ancestors, we calculated maternal generation time for two wild chimpanzee populations. We also provide the first comparison among three distinct approaches (genealogy, variance and life table methods) for calculating Ne, which resulted in slightly differing values for the Eskimos. The ratio of the effective to the census population size is estimated as 0.6-0.7 for autosomal and X-chromosomal DNA, 0.7-0.9 for mitochondrial DNA and 0.5 for Y-chromosomal DNA. A simulation of alleles along the genealogy suggested that Y-chromosomal DNA may drift a little faster than mitochondrial DNA in this population, in contrast to agricultural Icelanders. Our values will be useful not only in prehistoric population inference but also in understanding the shaping of our genome today.  相似文献   

4.
This study takes a fresh but simple approach to a controversial subject. A computer simulation is used to investigate the relation between the age of our most recent mitochondrial DNA ancestor (often called “mitochondrial Eve”) and the number of her contemporaries. The simulation follows a female population through 16,000 generations, allowing it to fluctuate at random, although guided by a growth rate of .02% per generation. At each generation an account is kept of the number of viable female lineages, that is, the number of original females who retain at least one female descendent. Simple statistical methods are applied to the results of thousands of such runs, and a correspondence is suggested — in tabular, functional, and graphical form — between the various ages commonly proposed for “mitochondrial Eve” and the likely size of the population at these times. In addition, several specific assertions are made about maximum and minimum populations in the past hundreds of thousands of years. This simulation does not presume to solve the age problem, nor to remove it from the ultimate authority of genetic research. Rather it provides a different tool with which to investigate the matter.  相似文献   

5.
Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called “hopeful monsters”. Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called “secondary endosymbiosis” (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt’s “hopeful monster” concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as “successful monsters”. In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the “primordial intermediate form”, although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.  相似文献   

6.
Brian J. Switek 《Evolution》2010,3(3):468-476
On May 19, 2009, an international team of scientists claimed to have found one of our early primate ancestors. Dubbed Darwinius masillae, the 47 million-year-old primate was presented as “the link” that bridged a gap between early primates and our anthropoid progenitors through a major media campaign, yet details about the way the fossil was acquired, the role media companies played in the presentation of the fossil, and disagreements about the fossil’s interpretation generated a controversy in which scientists, journalists, and science bloggers all played important roles. These debates were reinvigorated in the fall of 2009 when an independent team of researchers described a related fossil primate named Afradapis longicristatus, the study of which suggested that Darwinius was much further removed from our ancestry than had been initially proposed. The discussion of these fossils will no doubt continue, but the “Darwinius debates” of 2009 are significant in that they precipitated a long-awaited analysis of early primate relationships, illustrated the benefits and pitfalls of “going broad” with new discoveries, and exhibited how science blogs can work with traditional media outlets to counter exaggerated claims.  相似文献   

7.
All life on earth descended from a single common ancestor that existed several billion years ago; thus, any pair of organisms will have had a common ancestor at some point in their history. This concept is fundamental to an understanding of evolution and phylogeny. Developing an understanding of this concept is an important goal of evolution education and a part of most high school and college biology curricula. This study examines freshman undergraduate biology majors’ understanding and application of the concept of common ancestry. We used a survey that asked students to provide a brief definition of common ancestry and to rate their confidence that different pairs of organisms shared a common ancestor. Our results show that, although many students in our sample could give a satisfactory definition of common ancestry, the overwhelming majority failed to apply their definitions correctly when assessing the likelihood that the pairs of organisms shared common ancestors. Instead, we found that these students do not treat common ancestry as a binary (yes/no) trait, but instead see it as a continuum from less probable to more probable. These students are more likely to think that closely related organisms have a common ancestor than those that are more distantly related and that humans are less likely to be connected to common ancestors than nonhuman organisms. This pattern is highly consistent from student to student and has important implications for teaching evolution.  相似文献   

8.
This paper presents the basis of DNA genealogy, a new field of science, which is currently emerging as an unusual blend of biochemistry, history, linguistics, and chemical kinetics. The methodology of the new approach is comprised of chemical (biological) kinetics applied to a pattern of mutations in non-recombinant fragments of DNA (Y chromosome and mtDNA, the latter not being considered in this overview). The goal of the analysis is to translate DNA mutation patterns into time spans to the most recent common ancestors of a given population or tribe and to the dating of ancient migration routes. To illustrate this approach, time spans to the common ancestors are calculated for ethnic Russians, that is Eastern Slavs (R1a1 tribe), Western Slavs (I1 and I2 tribes), and Northern (or Uralic) Slavs (N1c tribe), which were found to live around 4600 years before present (R1a1), 3650 ybp (I1), 3000 and 10,500 ybp (I2, two principal DNA lineages), and 3525 ybp (N1c) (confidence intervals are given in the main text). The data were compared with the respective dates for the nearest common ancestor of the R1a1 “Indo-European” population in India, who lived 4050 years before present, whose descendants represent the majority of the upper castes in India today (up to 72%). Furthermore, it was found that the haplotypes of ethnic Russians of the R1a1 haplogroup (up to 62% of the population in the Russian Federation) and those of the R1a1 Indians (more than 100 million today) are practically identical to each other, up to 67-marker haplotypes. This essentially solves a 200-year-old mystery of who were the Aryans who arrived in India around 3500 years before the present. Haplotypes and time spans to the ancient common ancestors were also compared for the ethnic Russians of haplogroups I1 and I2, on one hand, and the respective I1 and I2 populations in Eastern and Western Europe and Scandinavia, on the other. It is suggested that the approach described in this overview lays the foundation for “molecular history”, in which the principal tool is high-technology analysis of DNA molecules of both our contemporaries and excavated ancient DNA samples, along with their biological kinetics.  相似文献   

9.
This essay examines the origin(s) of genotype–environment interaction, or G × E. “Origin(s)” and not “the origin” because the thesis is that there were actually two distinct concepts of G × E at this beginning: a biometric concept, or G × EB, and a developmental concept, or G × ED. R. A. Fisher, one of the founders of population genetics and the creator of the statistical analysis of variance, introduced the biometric concept as he attempted to resolve one of the main problems in the biometric tradition of biology – partitioning the relative contributions of nature and nurture responsible for variation in a population. Lancelot Hogben, an experimental embryologist and also a statistician, introduced the developmental concept as he attempted to resolve one of the main problems in the developmental tradition of biology – determining the role that developmental relationships between genotype and environment played in the generation of variation. To argue for this thesis, I outline Fisher and Hogben’s separate routes to their respective concepts of G × E; then these separate interpretations of G × E are drawn on to explicate a debate between Fisher and Hogben over the importance of G × E, the first installment of a persistent controversy. Finally, Fisher’s G × EB and Hogben’s G × ED are traced beyond their own work into mid-20th century population and developmental genetics, and then into the infamous IQ Controversy of the 1970s.  相似文献   

10.
The australopiths are a group of early hominins (humans and their close extinct relatives) that lived in Africa between approximately 4.1 and 1.4 million years ago. Formerly known as the australopithecines, they are not a “natural” group, in that they do not represent all of the descendants of a single common ancestor (i.e., they are not a “clade”). Rather, they are grouped together informally because nearly all share a similar adaptive grade (i.e., they have similar adaptations). In particular, they are bipedal apes that, to a greater or lesser extent, exhibit enlarged molar and premolar teeth (postcanine megadontia) and other associated modifications to their feeding apparatuses. Dietary adaptations clearly played an important role in shaping their evolutionary history. They also are distinguished by their lack of derived features typically associated with the genus Homo, such as a large brain, a broad complement of adaptations for manual dexterity, and advanced tool use. However, Homo is almost certainly descended from an australopith ancestor, so at least one or some australopiths belong directly to the human lineage. Regardless, australopiths had a rich evolutionary history deserving of study independent of questions about our direct ancestry. They were diverse, geographically widespread, and anatomically derived, they lived through periods of pronounced climate change, and their story dominates the narrative of human evolution for millions of years.  相似文献   

11.
The “Law of the Minimum” states that growth is controlled by the scarcest resource (limiting factor). This concept was originally applied to plant or crop growth (Justus von Liebig, 1840, Salisbury, Plant physiology, 4th edn., Wadsworth, Belmont, 1992) and quantitatively supported by many experiments. Some generalizations based on more complicated “dose-response” curves were proposed. Violations of this law in natural and experimental ecosystems were also reported. We study models of adaptation in ensembles of similar organisms under load of environmental factors and prove that violation of Liebig’s law follows from adaptation effects. If the fitness of an organism in a fixed environment satisfies the Law of the Minimum then adaptation equalizes the pressure of essential factors and, therefore, acts against the Liebig’s law. This is the the Law of the Minimum paradox: if for a randomly chosen pair “organism–environment” the Law of the Minimum typically holds, then in a well-adapted system, we have to expect violations of this law.  相似文献   

12.
All theories related to the evolution of Deinococcus radiodurans have a common denominator: the strong positive correlation between ionizing-radiation resistance and desiccation tolerance. Currently, the widespread hypothesis is that D. radiodurans’ ionizing-radiation resistance is a consequence of this organism’s adaptation to desiccation (desiccation adaptation hypothesis). Here, we draw attention to major discrepancy that has emerged between the “desiccation adaptation hypothesis” and recent findings in computational biology, experimental research, and terrestrial subsurface surveys. We explain why the alternative hypothesis, suggesting that D. radiodurans’ desiccation tolerance could be a consequence of this organism’s adaptation to ionizing radiation (radiation adaptation hypothesis), should be considered on equal basis with the “desiccation adaptation hypothesis”.  相似文献   

13.
Thomas Stach 《Zoomorphology》2007,126(3):203-214
Appendicularians have always occupied a central role in considerations of tunicate and chordate evolution. Two hypotheses have been proposed – one holds that appendicularia represents the sister taxon to the remaining tunicates, the other suggests that appendicularians were derived from an ascidian-like ancestor. In the present study I report results from electron microscopic investigation of larval tunicates including the first electron microscopic investigation of the tail of the early ontogenetic appendicularian “Streckform” and discuss their phylogenetic implications. The early “Streckform” of Oikopleura dioica Fol, 1872 is invested with an extracellular covering that consists of an inner electron-light layer and an electron-dense outermost layer. In addition, the extracellular covering forms fin blades. Because these traits are shown to be similar to the tunic of different ascidian larvae, the extracellular covering in early appendicularian embryos is suggested to be homologous to the larval tunic of ascidian larvae. Overall, the tail of early developmental stages of appendicularians consists of a mosaic of apomorphic and plesiomorphic features. The straight, continuous endodermal strand was inherited from a common chordate ancestor whereas the finlets of larvae, consisting of extracellular material, were inherited from a common tunicate ancestor. The horizontal orientation of the tail as a whole was inherited from the last common ancestor of appendicularians and aplousobranch ascidians, and the discovered floating extension at the posterior tip of the tail is unique to the holoplanktonic Oikopleura dioica. These findings support the hypothesis that Appendicularia is derived from a sessile, ascidian-like ancestor.  相似文献   

14.
Synaptosomal-associated protein 25 (SNAP25) is an essential component for synaptic vesicle mediated release of neurotransmitters. Deficiencies or abnormal structure or function of SNAP25 protein, possibly arising through genetic variations in the relevant DNA code, has been suggested to play role in the pathology of several neurobehavioural disorders including Attention deficit Hyperactivity Disorder (ADHD) and a number of polymorphisms in the SNAP25 gene has been studied for association with the disorder. In the present investigation, for the first time association between ADHD and six SNAP25 polymorphisms, rs1889189, rs362569, rs362988, rs3746544, rs1051312, and rs8636 was explored in eastern Indian population. Subjects were recruited following the Diagnostic and Statistical Manual for Mental Disorders-IV. Genomic DNA isolated from peripheral blood leukocytes of ADHD probands (n = 150), their parents (n = 272) and ethnically matched controls (n = 100) was used for amplifying target sites. Data obtained were subjected to population- as well as family-based analyses. While case–control analysis revealed lack of any significant difference for alleles, family-based studies revealed a mild over transmission rs3746544 ‘T’ and rs8636 ‘C’ alleles (P = 0.05 and 0.03 respectively). Haplotypes formed between rs362569 “T”, 362988 “G”, rs3746544 “T”, rs1051312 “T” and rs8636 “C” in different combinations showed statistically significant transmission to ADHD probands. Excepting rs3746544 and rs8636, all the tested sites showed very low linkage disequilibrium between them. Data obtained in this preliminary study indicates that rs3746544 ‘T’ allele may have some role in the disease etiology in the studied Indian population.  相似文献   

15.
Turkey is one of the few countries in the world where Familial Mediterranean Fever (FMF), an autoinflammatory disease caused by mutations in MEFV, the gene encoding pyrin, is not rare. Many interesting studies regarding the genetics of Familial Mediterranean Fever in Turkey have been already published. Despite that different MEFV genetic profiles have been revealed for Turkish FMF patients, deriving from different regions of Turkey, a systematic population genetics analysis has not been carried out yet. The present study aims to investigate the population genetics of MEFV in Turkish FMF patients so as to additionally facilitate the clinical interpretation of individualized genetic data. All relevant studies have been recruited by searching PubMed with the terms “MEFV”, “FMF”, and “Turkey”. Seven of them, including 3,061 FMF patients, contained all necessary data concerning allelic and genotypic frequencies of the 4 commonest MEFV mutations in Turkey (M694V, V726A, M680I, E148Q). From all 6,122 MEFV alleles analyzed, the M694V mutation was recognized in 15.6–52.2% (mean 29.3%), the V726A in 1.5–9.7% (mean 4.8%), the M680I in 1.5–15.5% (mean 7.6%), and the E148Q in 3.2–13.9% (mean 5.5%). Unidentified mutations ranged from 0–42.9% (mean 16.8%). No mutations were found in 0–54.5% (mean 36.0%) of the patients. The allelic and genotypic frequencies of the most frequent mutation (M694V) showed aberration of the Hardy–Weinberg law for all 7 populations studied. By application of the Arlequin 2.0 population genetics software, the Fixation index (F ST) was found to be 0.09994, thus demonstrating that the observed variability is mainly within (90.006%) and not among (9.994%) populations (P < 0.00001). Moreover, the global test of differentiation demonstrated that every population differs from each other (P < 0.00325). Finally, the Ewens–Watterson test of selective neutrality yielded to statistical significance in only 3 populations. In conclusion, Turkish FMF patients are characterized by an increased genetic heterogeneity, explained by the intrapopulation differentiation. Thus, the regional origin should be regarded as a determining factor in the diagnosis of FMF in Turkish patients.  相似文献   

16.
We consider a previously unknown way of propagation of behavioural traditions in animal communities using hunting in ants as an example. We experimentally revealed that common litter dwelling ants Myrmica rubra effectively hunt jumping prey and the way the hunting behavioural pattern is distributed within ant colonies is rather sophisticated. Comparison of our results with those obtained on vertebrates enables us to suggest that “distributed social learning” plays an important role in spreading new traditions in animal communities: initial performances by a few carriers of an “at once and entirely” available behavioural pattern propagate this pattern among specimens which have only dormant “sketches” of it. Spread of these behaviours in populations is based on relatively simple forms of social learning such as social facilitation which underlies species’ predisposition to learn certain sequences of behavioural acts. To be triggered, carriers of dormant “sketches” of a relevant behavioural pattern should encounter performances of this pattern with sufficient frequency. We call this strategy triggering of dormant behavioural patterns. Integration of behaviour thus takes place not only at the individual level but at the population level as well.  相似文献   

17.
We report a phylogenetic analysis of “core” Malvales (Tiliaceae, Sterculiaceae, Bombacaceae, and Malvaceae) based on morphological, anatomical, palynological, and chemical features. The results of the analyses lead to the conclusion that Tiliaceae, Sterculiaceae, and Bombacaceae, as variously delimited, are paraphyletic; only the Malvaceae are likely monophyletic. The genera of “core” Malvales form a well-defined clade. Genera of “Tiliaceae” constitute the basal complex within “core” Malvales. The “Sterculiaceae” (most genera)+ “Bombacaceae” + Malvaceae form a clade on the basis of a monadelphous androecium; “Bombacaceae”+ Malvaceae also form a clade, which is diagnosable on the basis of monoloculate anthers. It is clear that the traditional classification, with its arbitrarily delimited evolutionary grades, is unsatisfactory, especially if one seeks to reflect phylogeny accurately. Thus, Malvaceae is redefined to refer to the most recent common ancestor of plants previously considered to be “Tiliaceae,” “Sterculiaceae,” “Bombacaceae,” and Malvaceae, and all of the descendants of that ancestor. This broadly circumscribed Malvaceae can be diagnosed by several presumed synapomorphies, but we draw special attention to the unusual floral nectaries that are composed of densely packed, multicellular, glandular hairs on the sepals (or less commonly on the petals or androgynophore).  相似文献   

18.
The Siddis (Afro-Indians) are a tribal population whose members live in coastal Karnataka, Gujarat, and in some parts of Andhra Pradesh. Historical records indicate that the Portuguese brought the Siddis to India from Africa about 300-500 years ago; however, there is little information about their more precise ancestral origins. Here, we perform a genome-wide survey to understand the population history of the Siddis. Using hundreds of thousands of autosomal markers, we show that they have inherited ancestry from Africans, Indians, and possibly Europeans (Portuguese). Additionally, analyses of the uniparental (Y-chromosomal and mitochondrial DNA) markers indicate that the Siddis trace their ancestry to Bantu speakers from sub-Saharan Africa. We estimate that the admixture between the African ancestors of the Siddis and neighboring South Asian groups probably occurred in the past eight generations (~200 years ago), consistent with historical records.  相似文献   

19.
In contrast to many other models of human evolution the “balance of power” theory of Alexander has a clear answer to the question why a runaway selection process for unique social and moral capacities occurred in our ancestry only and not in other species: “ecological dominance” is hypothesized to have diminished the effects of “extrinsic” forces of natural selection such that withinspecies, intergroup competition increased (Alexander, 1989). Alexander seems to be wrong, however, in his claim that already the common HUCHIBO (Humans, Chimps, Bonobo's)-ancestor has crossed the ecological dominance barrier. In this paper an adapted version of Alexander's model is presented and several different ways are proposed to make this adapted version testable. A preliminary survey of the available paleontological and paleoecological data suggests that there is some evidence of a less vulnerable position towards predators in earlyHomo and that there are clear signs related to a crossing of the ecological dominance barrier inHomo sapiens sapiens.  相似文献   

20.
Protein evolution is not a random process. Views which attribute randomness to molecular change, deleterious nature to single-gene mutations, insufficient geological time, or population size for molecular improvements to occur, or invoke “design creationism” to account for complexity in molecular structures and biological processes, are unfounded. Scientific evidence suggests that natural selection tinkers with molecular improvements by retaining adaptive peptide sequence. We used slot-machine probabilities and ion channels to show biological directionality on molecular change. Because ion channels reside in the lipid bilayer of cell membranes, their residue location must be in balance with the membrane’s hydrophobic/philic nature; a selective “pore” for ion passage is located within the hydrophobic region. We contrasted the random generation of DNA sequence for KcsA, a bacterial two-transmembrane-domain (2TM) potassium channel, from Streptomyces lividans, with an under-selection scenario, the “jackprot,” which predicted much faster evolution than by chance. We wrote a computer program in JAVA APPLET version 1.0 and designed an online interface, The Jackprot Simulation , to model a numerical interaction between mutation rate and natural selection during a scenario of polypeptide evolution. Winning the “jackprot,” or highest-fitness complete-peptide sequence, required cumulative smaller “wins” (rewarded by selection) at the first, second, and third positions in each of the 161 KcsA codons (“jackdons” that led to “jackacids” that led to the “jackprot”). The “jackprot” is a didactic tool to demonstrate how mutation rate coupled with natural selection suffices to explain the evolution of specialized proteins, such as the complex six-transmembrane (6TM) domain potassium, sodium, or calcium channels. Ancestral DNA sequences coding for 2TM-like proteins underwent nucleotide “edition” and gene duplications to generate the 6TMs. Ion channels are essential to the physiology of neurons, ganglia, and brains, and were crucial to the evolutionary advent of consciousness. The Jackprot Simulation illustrates in a computer model that evolution is not and cannot be a random process as conceived by design creationists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号