首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The composition of membrane-bound electron-transferring proteins from denitrifying cells of Haloarcula marismortui was compared with that from the aerobic cells. Accompanying nitrate reductase catalytic NarGH subcomplex, cytochrome b-561, cytochrome b-552, and halocyanin-like blue copper protein were induced under denitrifying conditions. Cytochrome b-561 was purified to homogeneity and was shown to be composed of a polypeptide with a molecular mass of 40 kDa. The cytochrome was autooxidizable and its redox potential was −27 mV. The N-terminal sequence of the cytochrome was identical to the deduced amino acid sequence of the narC gene product encoded in the third ORF of the nitrate reductase operon with a unique arrangement of ORFs. The sequence of the cytochrome was homologous with that of the cytochrome b subunit of respiratory cytochrome bc. A possibility that the cytochrome bc and the NarGH constructed a supercomplex was discussed.  相似文献   

2.
A novel two-component signal transduction system amrB-amkB was cloned from rifamycin SV-producing Amycolatopsis mediterranei U32, and their biochemical functions as a response regulator and a histidine protein kinase, respectively, were proven. The amrB disruption mutant was generated by insertional inactivation with the aparmycin resistance gene. The metabolic response to the absence of amrB gene was determined by a biochemical profiling technique in which the concentration changes of metabolic intermediates were measured by gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS). Although the phenotype analyses of the amrB gene disruption mutant showed no significant change with respect to rifamycin SV production and morphological differentiation, the global metabolomic analyses found the concentration levels of some key intermediates in the TCA cycle and glycolysis pathway were affected by an amrB gene disruption event. The primary results suggested that amrB-amkB genes might be involved in the regulation of central carbohydrate metabolism in A. mediterranei U32.  相似文献   

3.
Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia coli narK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicum narG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.  相似文献   

4.
We present a novel light-dependent metabolism of an aromatic compound (trans-cinnamate) that is assimilatory rather than dissimilatory. Light-dependent assimilation of trans-cinnamate was observed by both growing and resting cells of Rhodobacter sphaeroides OU5. Trans-cinnamate assimilation could be correlated with simultaneous formation of both phenylalanine and tyrosine at near-stoichiometric ratios. Trans-cinnamate assimilation was promoted by carbon source and electron donors, such as glucose, pyruvate, or α-ketoglutarate, whereas malate, succinate, fumarate, and acetate were inhibitory.  相似文献   

5.
6.
To explore potassium toxicity in Microcystis sp., growth, chlorophyll a, carotenoid and phycocyanin content, uptake of nitrate, phosphate and ammonium and activities of the assimilatory enzymes nitrate reductase, alkaline phosphatase and glutamine synthetase (GS) were studied. Nitrate, phosphate, ammonium uptakes and chlorophyll a and phycocyanin contents decreased with increase in the concentration of potassium, but carotenoid content registered an increase at increasing potassium concentration. Alkaline phosphatase and GS activities followed the trend of inhibition of their respective nutrients, whereas nitrate and nitrate reductase showed negative correlation (p < 0.01). Potassium was found to inhibit the activities of all the assimilatory enzymes in a non-competitive manner. Inhibitions of these parameters support the view that potassium has the potential to regulate Microcystis blooms in an eco-friendly manner.  相似文献   

7.
8.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

9.
10.
Ceramides are important signal messenger molecules due to their role in regulating diverse responses such as cell cycle arrest, apoptosis, and senescence. Yeasts are more suitable for ceramides production than any other microorganisms since they grow fast and are non-pathogenic. However, regulations of the expression of genes involved in sphingolipid synthesis pathway are required to enhance ceramides production. In this study, we investigated the effects of co-expression of two pairs of genes that encode for serine palmitoyltransferase and ceramide synthase, respectively. Effect of other genes of the enzymes associated with the sphingolipid synthesis pathway, 3-ketosphinganine reductase and sphinganine C-4 hydroxylase were also studied and compared. The genes were cloned in to pESC-URA vector. Saccharomyces cerevisiae was cultivated aerobically in YPDG medium at 30°C. Ceramides were seperated from cell extracts by solvent extraction and quantified by HPLC with ELSD. The highest ceramides production (10.52 mg ceramides/g cell) was obtained when 3-ketosphinganine reductase, which is encoded by tsc10 gene, was overexpressed. Also, S. cerevisiae SCEL2,1 overexpressing serine palmitoyltransferase encoded by lcb2 and lcb1 genes, and S. cerevisiae SCEG1C1 overexpressing ceramide synthase encode by lag1 and lac1 genes, showed a high level of ceramides production (10.08 mg ceramides/g cell and 9.88 mg ceramides/g cell, respectively).  相似文献   

11.
12.
The distribution of noncanonical mercury resistance transposons, Tn5044 and Tn5070 , was examined. A characteristic feature of Tn5044 is temperature sensitivity of its mercury operon and the presence in the mer operon of the gene homologous to RNA polymerase subunit. Structural organization of mercury operon Tn5070 , containing minimum gene set (merRTPA), differs from mer operons of both Gram-negative and Gram-positive bacteria. None of more than two thousand environmental bacterial strains displaying mercury resistance and isolated from the samples selected from different geographical regions hybridized to Tn5044- and Tn5070-specific probes. A concept on the existence of cosmopolite, endemic, and rare transposons in environmental bacterial populations was formulated.Translated from Genetika, Vol. 40, No. 12, 2004, pp. 1717–1721.Original Russian Text Copyright © 2004 by Gorlenko, Kalyaeva, Bass, Petrova, Mindlin.  相似文献   

13.
Providencia rettgeri strain YL was found to be efficient in heterotrophic nitrogen removal under aerobic conditions. Maximum removal of NH4 +–N occurred under the conditions of pH 7 and supplemented with glucose as the carbon source. Inorganic ions such as Mg2+, Mn2+, and Zn2+ largely influenced the growth and nitrogen removal efficiency. A quantitative detection of nitrogen gas by gas chromatography was conducted to evaluate the nitrogen removal by strain YL. From the nitrogen balance during heterotrophic growth with 180 mg/l of NH4 +–N, 44.5% of NH4 +–N was in the form of N2 and 49.7% was found in biomass, with only a trace amount of either nitrite or nitrate. The utilization of nitrite and nitrate during the ammonium removal process demonstrated that the nitrogen removal pathway by strain YL was heterotrophic nitrification-aerobic denitrification. A further enzyme assay of nitrate reductase and nitrite reductase activity under the aerobic condition confirmed this nitrogen removal pathway.  相似文献   

14.
The stress-responsive, alternative sigma factor B has been described in members of three Gram-positive genera, Bacillus, Listeria, and Staphylococcus. In these bacteria, B appears to play an important role in facilitating rapid adaptation to and survival in stressful environments. B activity is regulated through a complex system of phosphatases and kinases encoded by rsb (regulator of sigma B) genes. We describe the sigB operon structure for the facultative intracellular pathogen Listeria monocytogenes and apply this sequence as well as other previously described sigB operon sequences to probe the evolution and functional conservation of the B stress response system among different Gram-positive bacteria. While B as well as two Rsbs (RsbS and RsbT) are highly conserved (73%, 84%, and 79% average amino acid [aa] identities, respectively), the predicted aa sequences of the other Rsb proteins showed less conservation (62–71% aa identities). Furthermore, the sigB operon structure varies among bacterial species. Bacterial species differ in the numbers and identities of rsb genes encoded in their genomes. We thus conclude that the B stress-response system as represented by the sigB operon has diverged in both its overall components as well as in the sequences of its individual proteins, even among closely related bacterial species. Differential evolution of this stress response system among various genera may represent a strategy that enables bacteria to adapt cellular response and survival systems to a variety of stress conditions.  相似文献   

15.
Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O2), while no visible colonies were formed in the absence of O2. However, in the presence of nitrate (), the organism exhibited limited growth anaerobically with production of nitrite (), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using l-lysine- and l-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.  相似文献   

16.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

17.
18.
Pakchoi plants were grown in 32 mM NO3? nutrient solution with or without 2.5 mM γ-aminobutyric acid (GABA) to investigate metabolite changes, gene and protein expression levels, and the activities of key enzymes related to nitrate metabolism in the leaves over a period of 0–12 days. High-nitrogen treatment enhanced plant growth and the NO3?, NO2?, NH4+, Gln, and Glu contents in the leaves; promoted the gene and protein expression of nitrate reductase (NR) and glutamate decarboxylase (GAD); and increased the activities of NR, nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and GAD. The endogenous GABA concentration in the leaves was enhanced in parallel with the increase in GAD activity. The GABA-treated leaves displayed the greatest increases in the gene and protein expression levels of NR and GAD and in the activities of NR, NiR, GS, GOGAT, and GAD. In addition, accelerated rates of nitrate reduction and assimilation were detected, and these changes occurred concurrently with the observed increases in gene or protein expression and enzyme activity. As a result, the concentrations of NH4+, Gln, Glu, and endogenous GABA were significantly elevated, and the NO3? and NO2? contents were significantly decreased, in GABA-treated leaves compared with plants exposed to nitrogen-rich conditions. Our results reveal a potential positive that GABA may act as a nitrogen source to improve the plant growth and the most prominent effect of decreasing nitrate contents by accelerating NO3? reduction and assimilation. Exogenous GABA plays an important role in reducing the NO3? content of leaves, and thereby improves the ability to harvest leafy vegetables containing higher levels of endogenous GABA.  相似文献   

19.
Nitrogen (N) is a macronutrient essential for plant growth and development. Meanwhile, grafting is a method used to alleviate stress tolerance of various biotic and abiotic factors. This study aims to investigate how pumpkin grafting (PG) improves N use efficiency of watermelon. A commercial watermelon cultivar “Zaojia 8424” [Citrullus lanatus (Thunb.) Matsum. and Nakai.] was self-grafted and then grafted onto pumpkin (Cucurbita maximaC. moschata) rootstock cv. Qingyan Zhenmu No. 1. The grafted plants were exposed to two levels of N (9 and 0.2 mM) under hydroponic conditions. The grafted plants were harvested at days 11 and 22 after low N (0.2 mM) treatment. PG improved the N use efficiency of watermelon scion through the vigorous root system of pumpkin rootstock that enhanced the uptake and accumulation of N, P, K, Ca, Mg, B, and Mn in watermelon. Gene expressions of nitrate reductase (Cla002787, Cla002791, and Cla023145) and nitrite reductase (Cla013062) genes were increased, promoting N assimilation. Mesophyll thickness and SPAD index (relative chlorophyll measurement) were also improved. Furthermore, pumpkin rootstock also enhanced the supply of zeatine riboside (ZR) and isopentenyl adenosine (iPA) in the leaves, promoting shoot growth. All these lead to improved plant growth and nitrogen use efficiency of pumpkin rootstock-grafted watermelon plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号