首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.  相似文献   

2.
Culling can be an effective management tool for reducing populations of invasive species to levels that minimize ecological effects. However, culling is labour-intensive, costly, and may have unintended ecological consequences. In the Caribbean, culling is widely used to control invasive Indo-Pacific lionfish, Pterois volitans and P. miles, but the effectiveness of infrequent culling in terms of reducing lionfish abundance and halting native prey decline is unclear. In a 21-month-long field experiment on natural reefs, we found that culling effectiveness changed after the passage of a hurricane part-way through the experiment. Before the hurricane, infrequent culling resulted in substantial reductions in lionfish density (60–79%, on average, albeit with large uncertainty) and slight increases in native prey species richness, but was insufficient to stem the decline in native prey biomass. Culling every 3 months (i.e., quarterly) and every 6 months (i.e., biannually) had similar effects on lionfish density and native prey fishes because of high rates of lionfish colonization among reefs. After the hurricane, lionfish densities were greater on all culled reefs compared to non-culled reefs, and prey biomass declined by 92%, and species richness by 71%, on biannually culled reefs. The two culling frequencies we examined therefore seem to offer a poor trade-off between the demonstrated conservation gains that can be achieved with frequent culling and the economy of time and money realized by infrequent culling. Moreover, stochastic events such as hurricanes can drastically limit the effectiveness of culling efforts.  相似文献   

3.
As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.  相似文献   

4.
A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species’ detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish (Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.  相似文献   

5.
Indo-Pacific lionfish (Pterois volitans and P. miles) have spread swiftly across the Western Atlantic, producing a marine predator invasion of unparalleled speed and magnitude. There is growing concern that lionfish will affect the structure and function of invaded marine ecosystems, however detrimental impacts on natural communities have yet to be measured. Here we document the response of native fish communities to predation by lionfish populations on nine coral reefs off New Providence Island, Bahamas. We assessed lionfish diet through stomach contents analysis, and quantified changes in fish biomass through visual surveys of lionfish and native fishes at the sites over time. Lionfish abundance increased rapidly between 2004 and 2010, by which time lionfish comprised nearly 40% of the total predator biomass in the system. The increase in lionfish abundance coincided with a 65% decline in the biomass of the lionfish's 42 Atlantic prey fishes in just two years. Without prompt action to control increasing lionfish populations, similar effects across the region may have long-term negative implications for the structure of Atlantic marine communities, as well as the societies and economies that depend on them.  相似文献   

6.
Lionfish (Pterois volitans/miles) have invaded the majority of the Caribbean region within five years. As voracious predators of native fishes with a broad habitat distribution, lionfish are poised to cause an unprecedented disruption to coral reef diversity and function. Controls of lionfish densities within its native range are poorly understood, but they have been recorded in the stomachs of large-bodied Caribbean groupers. Whether grouper predation of lionfish is sufficient to act as a biocontrol of the invasive species is unknown, but pest biocontrol by predatory fishes has been reported in other ecosystems. Groupers were surveyed along a chain of Bahamian reefs, including one of the region's most successful marine reserves which supports the top one percentile of Caribbean grouper biomass. Lionfish biomass exhibited a 7-fold and non-linear reduction in relation to the biomass of grouper. While Caribbean grouper appear to be a biocontrol of invasive lionfish, the overexploitation of their populations by fishers, means that their median biomass on Caribbean reefs is an order of magnitude less than in our study. Thus, chronic overfishing will probably prevent natural biocontrol of lionfishes in the Caribbean.  相似文献   

7.
Aim Lionfish (Pterois volitans and P. miles) are popular ornamental fishes native to the Indo‐Pacific that were introduced into Florida waters and are rapidly spreading and establishing throughout the Western Atlantic (WA). Although unfortunate, this invasion provides an excellent system in which to test hypotheses on conservation biology and marine biogeography. The goals of this study are: (1) to document the geographical extent of P. volitans and P. miles; (2) to determine whether the progression of the lionfish invasion is the result of expansion following the initial introduction event or the consequence of multiple introductions at various WA locations; and (3) to analyse the chronology of the invasion in conjunction with the genetic data in order to provide real‐time assessments of hypotheses of marine biogeography. Location The Greater Caribbean, including the US east coast, Bermuda, the Bahamas and the Caribbean Sea. Methods Mitochondrial control region sequences were obtained from lionfish individuals collected from Bermuda and three Caribbean locations and analysed in conjunction with previously published data from five native and two non‐native locations (US east coast and the Bahamas; a total of six WA locations). Genetic variation within and among groups was quantified, and population structure inferred via spatial analyses of molecular variance, pairwise ΦST, exact tests, Mantel tests and haplotype networks. Results Mitochondrial DNA screening of WA lionfish shows that while P. miles is restricted to the northernmost locations (Bermuda and the US east coast), P. volitans is ubiquitous and much more abundant. Invasive populations of P. miles and P. volitans have significantly lower levels of genetic diversity relative to their native counterparts, confirming that their introduction resulted in a strong founder effect. Despite the relative genetic homogeneity across the six WA locations, population structure analyses of P. volitans indicate significant differentiation between the northern (US east coast, the Bahamas and Bermuda) and the Caribbean populations. Main conclusions Our findings suggest that the ubiquity of WA lionfish is the result of dispersal from a single source of introduction in Florida and not of multiple independent introductions across the range. In addition, the progression of the lionfish invasion (as documented from sightings), integrated with the genetic evidence, provides support for five of six major scenarios of connectivity and phylogeographical breaks previously inferred for Caribbean organisms.  相似文献   

8.
The lionfish, Pterois miles, is one of the most recent Lessepsian immigrants into the Mediterranean Sea, and it poses a serious threat to marine ecosystems in the region. This study assesses the basic biology and ecology of lionfish in the Mediterranean, examining morphometrics, reproduction and diet as well as population structure and distribution. The population density of lionfish has increased dramatically in Cyprus since the first sighting in late 2012; by 2018 aggregations of up to 70 lionfish were found on rocky grounds with complex reefs and artificial reefs in depths of 0–50 m. Lionfish in Cyprus become mature within a year, and adults are capable of spawning year-round, with peak spawning in summer when the sea-surface temperature reaches 28.4°C. The Cypriot lionfish grow faster and bigger than in their native range, and females are more common than males. Lionfish are generalist predators in these waters, as also found in their native range, consuming a range of teleost and crustacean prey, some of which are of high economic value (e.g., Spicara smaris and Sparisoma cretense) or have an important role in local trophic webs (e.g., Chromis chromis). Overall, the reproductive patterns, the presence of juveniles and adults throughout the year, the rapid growth rates and the generalist diet indicate that lionfish are thriving and are now already well established in the region and could potentially become the serious nuisance that they are in their temperate and tropical western Atlantic–invasive range.  相似文献   

9.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

10.
Successful invasions are largely explained by some combination of enemy release, where the invader escapes its natural enemies from its native range, and low biotic resistance, where native species in the introduced range fail to control the invader. We examined the extent to which parasites may mediate both release and resistance in the introduction of Pacific red lionfish (Pterois volitans) to Atlantic coral reefs. We found that fewer lionfish were parasitized at two regions in their introduced Atlantic range (The Bahamas and the Cayman Islands) than at two regions in their native Pacific range (the Northern Marianas Islands and the Philippines). This pattern was largely driven by relatively high infection rates of lionfish by didymozoan fluke worms and parasitic copepods (which may be host-specific to Pterois lionfishes) in the Marianas and the Philippines, respectively. When compared with sympatric, native fishes in the Atlantic, invasive lionfish were at least 18 times less likely to host a parasite in The Bahamas and at least 40 times less likely to host a parasite in the Cayman Islands. We found no indication that lionfish introduced Pacific parasites into the Atlantic. In conjunction with demographic signs of enemy release such as increased density, fish size, and growth of invasive lionfish, it is possible that escape from parasites may have contributed to the success of lionfish. This is especially true if future studies reveal that such a loss of parasites has led to more energy available for lionfish growth, reproduction, and/or immunity.  相似文献   

11.
The recent irruption of Pacific red lionfish (Pterois volitans) on Caribbean and Atlantic coral reefs could prove to be one of the most damaging marine invasions to date. Invasive lionfish are reaching densities much higher than those reported from their native range, and they have a strong negative effect on the recruitment and abundance of a broad diversity of native coral-reef fishes. Otherwise, little is known about how lionfish affect native coral-reef communities, especially compared to ecologically similar native predators. A controlled field experiment conducted on small patch-reefs in the Bahamas over an 8-week-period demonstrated that (1) lionfish caused a reduction in the abundance of small native coral-reef fishes that was 2.5?±?0.5 times (mean?±?SEM) greater than that caused by a similarly sized native piscivore, the coney grouper Cephalopholis fulva (93.7 vs. 36.3?% reduction); (2) lionfish caused a reduction in the species richness of small coral-reef fishes (loss of 4.6?±?1.6 species), whereas the native piscivore did not have a significant effect on prey richness; (3) the greatest effects on the reef-fish community, in terms of both abundance and richness, occurred when both native and invasive predators were present; and (4) lionfish grew significantly faster (>6 times) than the native predator under the same field conditions. These results suggest that invasive lionfish have stronger ecological effects than similarly sized native piscivores, and may pose a substantial threat to native coral-reef fish communities.  相似文献   

12.
Lionfish (Pterois miles) were observed avoiding coral pinnacles inhabited by the moray eels Gymnothorax flavimarginatus and G. javanicus in the northern Red Sea, Egypt. Release of lionfish (Standard Length 93–104 mm) in such coral pinnacles in November 2016 resulted in almost immediate predation by large moray eels (Total Length > 1 m). Predation by moray eels may be the key control mechanism of population growth in the native biogeographical range of Pterois spp. and may indirectly explain the success of the invasive populations. This is the first video-documented record of moray eels feeding on the lionfish P. miles.  相似文献   

13.
Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha−1. This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs.  相似文献   

14.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

15.
Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.  相似文献   

16.
In Caribbean reefs, the lionfish Pterois volitans is an invasive species that causes severe negative ecological effects, especially as this crepuscular predator consumes very diverse prey. Lionfish are not active during the day and stay in their refuges, sharing these spaces with various other fishes. The aim of this study is to determine which fishes are associated with the lionfish in their shelters, and what characteristics of both the invasive and native species may influence and explain such coexistence between a predator and its potential prey. Through diving and snorkelling, we visited 141 lionfish refuges, mostly caves, where we observed 204 lionfish and 494 other fish from 16 native species. We recorded species and abundance, as well as lionfish size and abundance. Half of the lionfish were observed in groups and the majority were large-sized. The association with most fish species seems fortuitous, but three species, Gramma loreto, Chromis cyanea and Canthigaster rostrata, were frequently observed in association with lionfish. Numerous fish juveniles, most likely Scarus coeruleus, were also observed together with the invasive predator. The more commonly associated fishes, particularly G. loreto, are mostly associated with large-sized lionfish that were found in groups. The associated fishes are also generally found in groups. Gramma loreto is a potential cleaner of the lionfish; the reasons for the association between these fish species and the invasive lionfish may be more complex than a simple predator-prey relationship and are discussed based on their biological traits and previously reported lionfish trophic ecology and predation behaviour.  相似文献   

17.
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.  相似文献   

18.
Coral Reefs - The impacts of invasive lionfish (Pterois volitans/miles) on native coral reef populations in the Western Atlantic Ocean and Caribbean Sea can be enormous. However, how much lionfish...  相似文献   

19.
Described are the length–weight (LW) and length–length (LL) relationships of the Indo–Pacific, red lionfish [Pterois volitans (Linnaeus, 1758): Scorpaenidae] – an invasive fish introduced into the coral reefs of the Western Atlantic. Volunteer diver‐fishers speared a total of 455 red lionfish (range 9–35 cm TL) from July 2010 to December 2011 in the Parque Nacional Arrecife Alacranes, off the northern coast of the Yucatan Peninsula, Mexico. The LWR obtained in the combined data was W = 0.104TL3.309.  相似文献   

20.
Information on fish movement and growth is primarily obtained through the marking and tracking of individuals with external tags, which are usually affixed to anesthetized individuals at the surface. However, the quantity and quality of data obtained by this method is often limited by small sample sizes owing to the time associated with the tagging process, high rates of tagging‐related mortality, and displacement of tagged individuals from the initial capture location. To address these issues, we describe a technique for applying external streamer and dart tags in situ, which uses SCUBA divers to capture and tag individual fish on the sea floor without the use of anesthetic. We demonstrate this method for Indo‐Pacific lionfish (Pterois volitans/P. miles), species which are particularly vulnerable to barotrauma when transported to and handled at the surface. To test our method, we tagged 161 individuals inhabiting 26 coral reef locations in the Bahamas over a period of 3 years. Our method resulted in no instances of barotrauma, reduced handling and recovery time, and minimal post‐tagging release displacement compared with conventional ex situ tag application. Opportunistic resighting and recapture of tagged individuals reveals that lionfish exhibit highly variable site fidelity, movement patterns, and growth rates on invaded coral reef habitats. In total, 24% of lionfish were resighted between 29 and 188 days after tagging. Of these, 90% were located at the site of capture, while the remaining individuals were resighted between 200 m and 1.1 km from initial site of capture over 29 days later. In situ growth rates ranged between 0.1 and 0.6 mm/day. While individuals tagged with streamer tags posted slower growth rates with increasing size, as expected, there was no relationship between growth rate and fish size for individuals marked with dart tags, potentially because of large effects of tag presence on the activities of small bodied lionfish (i.e., <150 mm), where the tag was up to 7.6% of the lionfish's mass. Our study offers a novel in situ tagging technique that can be used to provide critical information on fish site fidelity, movement patterns, and growth in cases where ex situ tagging is not feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号