首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cystic fibrosis individuals, chronic lung infections and hospital-acquired pneumonia are caused by Pseudomonas aeruginosa. P. aeruginosa generates siderophores such as pyoverdine (PVD) as iron uptake systems to cover its needs of iron ions for growth and infection. lasR quorum sensing (QS) gene has a crucial function in PVD production and biofilm generation in P. aeruginosa. Fifty isolates of P. aeruginosa were obtained from clinical specimens of sputum (collected from individuals suffering from pulmonary infections). Antibiotic sensitivity test was performed for 50P. aeruginosa isolates by using 10 different types of antibiotics. All isolates of P. aeruginosa showed resistance for all 10 using antibiotics in this study. Ten multidrug resistant isoloates of P. aeruginosa were selected for next tests. Virulence factors of ten multidrug resistant isolates of P. aeruginosa, such as biofilm generation, PVD production, and lasR gene were detected. From results, all 10P. aeruginosa isolates can produce biofilm, PVD, and contain lasR gene. The produced amplicon for the lasR gene was 725 bp. After mice injection by fresh and heated PVD produced by P. aeruginosa PS10 LC619328.2, the fresh PVD caused 100 % mortality within five days using 0.3 ml of its concentration (37.4 µM), while (15.3 µM) of heated PVD (toxoid) caused 50 % mortality.  相似文献   

2.

Background  

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in patients with cystic fibrosis (CF). With chronicity of infection, the organism resides as a biofilm, shows multi-drug resistance, diversifies its colony morphology and becomes auxotrophic. The patients have been found to be colonized with multiple genotypes. The present work was carried out to characterize P. aeruginosa isolated from children with cystic fibrosis using phenotypic and genotypic methods.  相似文献   

3.
The bacterium Pseudomonas aeruginosa is commonly isolated from the general environment and also infects the lungs of patients with cystic fibrosis (CF). Iron in mammals is not freely available to infecting pathogens although significant amounts of extracellular iron are available in the sputum that occurs in the lungs of CF patients. P. aeruginosa has a large number of systems to acquire this essential nutrient and many of these systems have been characterised in the laboratory. However, which iron acquisition systems are active in CF is not well understood. Here we review recent research that sheds light on how P. aeruginosa obtains iron in the lungs of CF patients.  相似文献   

4.
Multi-drug resistant Pseudomonas aeruginosa (MDRPA) are emerging as a major threat in the hospitals as they have become resistant to current antibiotics. There is an immediate requirement of drugs with novel mechanisms as the pipeline of investigational drugs against these organisms is lean. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme that catalyzes the first committed step of bacterial cell wall biosynthesis is an ideal target for the discovery of novel antibiotics against Gram negative pathogens as they have only one copy of murA gene in its genome. We have performed biochemical characterization and comparative kinetic analysis of MurA from E. coli and P. aeruginosa. Both enzymes were active at broad range of pH with temperature optima of 37°C. Metal ions did not enhance the activity of both enzymes. These enzymes had an apparent affinity constant (K m ) for its substrate UDP-N-acetylglucosamine 36 ± 5.2 and 17.8 ± 2.5 μM and for phosphoenolpyruvate 0.84 ± 0.13 μM and 0.45 ± 0.07 μM for E. coli and P. aeruginosa enzymes respectively. Both the enzymes showed 5–7 fold shift in IC50 for the known inhibitor fosfomycin upon pre-incubation with the substrate UDP-N-acetylglucosamine. This observation was used to develop a novel rapid sensitive high throughput assay for the screening of MurA inhibitors.  相似文献   

5.
Infections caused by Pseudomonas aeruginosa become increasingly difficult to treat because these bacteria have acquired various mechanisms for antibiotic resistance, which creates the need for mechanistically novel antibiotics. Such antibiotics might be developed by targeting enzymes involved in the iron uptake mechanism because iron is essential for bacterial survival. For P. aeruginosa, pyoverdine has been described as an important virulence factor that plays a key role in iron uptake. Therefore, inhibition of enzymes involved in the pyoverdine synthesis, such as PvdP tyrosinase, can open a new window for the treatment of P. aeruginosa infections. Previously, we reported phenylthiourea as the first allosteric inhibitor of PvdP tyrosinase with high micromolar potency. In this report, we explored structure-activity relationships (SAR) for PvdP tyrosinase inhibition by phenylthiourea derivatives. This enables identification of a phenylthiourea derivative (3c) with a potency in the submicromolar range (IC50 = 0.57 + 0.05 µM). Binding could be rationalized by molecular docking simulation and 3c was proved to inhibit the bacterial pyoverdine production and bacterial growth in P. aeruginosa PA01 cultures.  相似文献   

6.

Background  

Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood.  相似文献   

7.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

8.
The automated docking program DOCK 5.3.0 was applied to screening for quorum sensing inhibitors (QSIs) of Peudomonus aeruginosa from a database containing 51 active components of Traditional Chinese Medicines with antibacterial activity. Five potential QSIs were revealed by the computer-based virtual screening. The compounds 3, 4, 5, 6, 7 inhibit biofilm formation of P. aeruginosa at a concentration of 200 μM. Compound 4 (baicalein) does not inhibit the growth of P. aeruginosa; however, it significantly inhibits biofilm formation of the bacteria at a lower concentration of 20 μM and promoted proteolysis of the signal receptor TraR protein in Escherichia coli at 4–40 mM. Baicalein and ampicillin showed synergistic activity against P. aeruginosa. These results suggested that baicalein can interfere with quorum sensing system of P. aeruginosa and will be developed as antibacterial agent with novel target.  相似文献   

9.
10.

Background  

Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro.  相似文献   

11.

Background  

Staphylococcus aureus and Pseudomonas aeruginosa are often found together in the airways of cystic fibrosis (CF) patients. It was previously shown that the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) suppresses the growth of S. aureus and provokes the emergence of small-colony variants (SCVs). The presence of S. aureus SCVs as well as biofilms have both been associated with chronic infections in CF.  相似文献   

12.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.  相似文献   

13.
Due to its capability for producing various microcystins, Microcystis aeruginosa is recognized as one of the most toxic, bloom-forming cyanobacteria. In this study, the fates of intra- and extracellular microcystin-LR (MC-LR) were investigated when the mixotrophic golden alga Poterioochromonas sp. (ZX1) was grazing on M. aeruginosa cells. In the control groups, the total MC-LR concentration increased with the growth of M. aeruginosa with an MC-LR content per cell of 0.5–1.5 × 10−8 μg cell−1. In the treatment with ZX1, the total MC-LR decreased linearly throughout the incubation period. In particular, intracellular MC-LR disappeared with a loss of M. aeruginosa cells in the first few days. Part of the intracellular MC-LR was released to the medium under the grazing stress, resulting in an increase of extracellular MC-LR. The degradation rate of MC-LR was positively related to the initial abundance of ZX1 and negatively related to that of M. aeruginosa. The inhibition ratio of MC-LR production dropped sharply from 98 to 67% when the initial abundance of M. aeruginosa increased from 106 to 107 cells ml−1. However, it increased from 84 to 99% when the initial ZX1 abundance increased from 104 to 105 cells ml−1. The effective removal of both M. aeruginosa cells and MC-LR was observed under lower M. aeruginosa abundance (<106 cells ml−1) and higher ZX1 abundance (>1% of M. aeruginosa abundance). Light had little impact on MC-LR degradation, but MC-LR degradation decreased due to the loss of ZX1 after 10 days of darkness. This study showed that the interactions between M. aeruginosa and ZX1 were strongly influenced by their initial abundances.  相似文献   

14.

Background  

Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF). To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells.  相似文献   

15.
The acquisition of iron is a crucial mechanism for the survival of pathogenic bacteria such as Pseudomonas aeruginosa in eukaryotic hosts. The key iron chelator in this organism is the siderophore pyoverdine, which was shown to be crucial for iron homeostasis. Pyoverdine is a non-ribosomal peptide with several maturation steps in the cytoplasm and others in the periplasmatic space. A key enzyme for its maturation is the acylase PvdQ. The inhibition of PvdQ stops the maturation of pyoverdine causing a significant imbalance in the iron homeostasis and hence can negatively influence the survival of P. aeruginosa. In this work, we successfully synthesized chromene-derived inhibitory molecules targeting PvdQ in a low micromolar range. In silico modeling as well as kinetic evaluations of the inhibitors suggest a competitive inhibition of the PvdQ function. Further, we evaluated the inhibitor in vivo on P. aeruginosa cells and report a dose-dependent reduction of pyoverdine formation. The compound also showed a protecting effect in a Galleria mellonella infection model.  相似文献   

16.
Wetland dynamics are probably linked to cholera endemicity in South Asia. We focus on links between Vibrio cholerae abundance, chitin content and suspended particle load in size fractions of suspended particulate matter (SPM) along the salinity gradient of Sunderban mangrove waters. SPM decreased downstream, while salinity increased from 0.2 to 4. Particulate organic carbon (90 ± 25 μM) and nitrogen (9.1 ± 3.3 μM) highly correlated with SPM and turbidity, suggesting a significant contribution of fine particles to organic matter. Total chitin ranged 1–2 mg/l and decreased downstream. The distribution among size fractions of SPM, chitin and V. cholerae O1 (the bacterial serogroup mainly associated with cholera epidemics) was similar, with ~98% of the total in the fraction <20 μm. In comparison, the number of V. cholerae O1 attached to zooplankton and microplankton size classes >20 μm was almost negligible, in contrast to usual assumptions. Thus, microdetritus, nanoplankton and fungal cells in size classes <20 μm represent a chitinaceous substrate on which V. cholerae can grow and survive. Total bacteria, cultivable vibrios and V. cholera O1 increased 5–10 times downstream, together with salinity and nitrite concentration. Overall, nitrate and silicate concentrations were relatively constant (>22 μM N and 100 μM Si). However, nitrite increased ~9 times in the outer sector, reaching ~1.2 μM N, probably as a result of increased abundance of nitrate-reducing vibrios. A characterization of Vibrio habitats that takes account of the presence of nitrate-reducing bacteria could improve the understanding of both mangrove nitrogen cycling and cholera seasonality.  相似文献   

17.
The capability for biofilm and quorum-sensing (QS) signaling production among Pseudomonas aeruginosa isolates were evaluated. A total of 231 isolates were recovered from sputa of cystic fibrosis (CF, n = 104) and non-CF (non-CF, n = 127) patients. One hundred ninety-seven (85.3%; 95% CI 80.1–89.3%) were biofilm producers and 157 (68%; 95% CI 61.7–73.6%) were weak QS-producing. No difference was observed between CF and non-CF isolates regarding the ability to produce biofilm and QS-signaling. Interestingly, the degree of QS production appears to be related to the degree of biofilm production. Thus, blocking QS pathways may be crucial in the prevention and treatment of biofilm-related infections.  相似文献   

18.
The Alternaria mycotoxin tenuazonic acid (TA) was quantified in fruit juices (n = 50), cereals (n = 12) and spices (n = 38) using a recently developed stable isotope dilution assay (SIDA). [13 C6,15 N]-TA was used as the internal standard. Method validation revealed low limits of detection (LODs) of 0.15 μg/kg (fruit juices), 1.0 μg/kg (cereals) and 17 μg/kg (spices). The respective limits of quantitation were about three times higher. Recovery was about 100% for all matrices. The precision (relative standard deviation of replicate analyses of naturally contaminated samples) was 4.2% (grape juice; 1.7 μg/kg), 3.5% (whole wheat flour; 36 μg/kg) and 0.9% (curry powder; 215 μg/kg). The median content of TA in the analyzed samples was 1.8 μg/kg (fruit juices), 16 μg/kg (cereals) and 500 μg/kg (spices). Positive samples amounted to 86% (fruit juices), 92% (cereals) and 87% (spices).  相似文献   

19.
Candida-associated denture stomatitis has a high rate of recurrence. Candida biofilms formed on denture acrylic are more resistant to antifungals than planktonic yeasts. Histatins, a family of basic peptides secreted by the major salivary glands in humans, especially histatin 5, possess significant antifungal properties. We examined antifungal activities of histatin 5 against planktonic or biofilm Candida albicans and Candida glabrata. Candida biofilms were developed on poly(methyl methacrylate) discs and treated with histatin 5 (0.01–100 μM) or fluconazole (1–200 μM). The metabolic activity of the biofilms was measured by the XTT reduction assay. The fungicidal activity of histatin 5 against planktonic Candida was tested by microdilution plate assay. Biofilm and planktonic C. albicans GDH18, UTR-14 and 6122/06 were highly susceptible to histatin 5, with 50% RMA (concentration of the agent causing 50% reduction in the metabolic activity; biofilm) of 4.6 ± 2.2, 6.9 ± 3.7 and 1.7 ± 1.5 μM, and IC50 (planktonic cells) of 3.0 ± 0.5, 2.6 ± 0.1 and 4.8 ± 0.5, respectively. Biofilms of C. glabrata GDH1407 and 6115/06 were less susceptible to histatin 5, with 50% RMA of 31.2 ± 4.8 and 62.5 ± 0.7 μM, respectively. Planktonic C. glabrata was insensitive to histatin 5 (IC50 > 100 μM). Biofilm-associated Candida was highly resistant to fluconazole in the range 1–200 μM; e.g. at 100 μM only ~20% inhibition was observed for C. albicans, and ~30% inhibition for C. glabrata. These results indicate that histatin 5 exhibits antifungal activity against biofilms of C. albicans and C. glabrata developed on denture acrylic. C. glabrata is significantly less sensitive to histatin 5 than C. albicans.  相似文献   

20.
Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF) patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs) surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3 and NO2 in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4–157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3 decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号