首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraspecific microhabitat segregation is expected to arise when there are age- or sex-specific differences in predation risk. The degree to which conspecific predation (cannibalism) can generate this risk, however, is poorly understood. In this paper, we examine microhabitat use, cannibalism, and individual responses to the presence of conspecifics in Thermosphaeroma thermophilum, an endangered isopod crustacean species that is endemic to a single, thermal spring in Socorro, N.M. USA. In samples from the natural habitat, juveniles (mancas) were found mainly on vegetation, whereas adults were found predominantly on bottom sediments. Females were found on vegetation more often than males. In laboratory containers without refuges, males cannibalized females, males and females cannibalized mancas, and mancas cannibalized each other, even in the presence of alternative food. When placed in containers provided with refuges, mancas actively avoided adults. We suggest, therefore, that cannibalism in T. thermophilum generates age-, size-, and sex-specific predation risks which are responsible for microhabitat segregation between mancas and adults, and between males and females. Since interspecific predation in the spring is negligible, cannibalism appears to play a significant role in population regulation and behavioral evolution in this species. We recommend, given the current “endangered” status of this species, that microhabitat heterogeneity be maintained in its native spring because it provides refuges from cannibalism and may support a larger and more viable natural population. Received: 28 June 1996 / Accepted: 24 February 1997  相似文献   

2.
Summary Intraspecific predation is taxonomically widespread, but few species routinely prey on conspecifics. This is surprising as conspecifics could be a valuable resource for animals limited by food. A potential cost of cannibalism that has been largely unexplored is that it may enhance the risk of acquiring debilitating pathogens or toxins from conspecifics. We examined how pathogens affect variation in the incidence of cannibalism in tiger salamander larvae (Ambystoma tigrinum nebulosum), which occur as two environmentally-induced morphs, typicals and cannibals. Salamanders from one population were more likely than those in another to develop into cannibals, even when reared under identical conditions. Variation in the propensity to become a cannibal may be caused by variation in pathogen density. In the population with cannibals at low frequency, bacterial blooms in late summer correlated with massive die-offs of salamanders. The frequency of cannibals correlated significantly negatively with bacterial density in ten different natural lakes. In the laboratory, cannibals exposed to a diseased conspecific always preyed on the sick animal. As a result, cannibals wre more likely to acquire and die from disease than were typicals that were similarly exposed, or cannibals that were exposed to healthy conspecifics. Since conspecifics often share lethal pathogens, enhanced risk of disease may explain why cannibalism is generally infrequent. Pathogens may constrain not only the tendency to be behaviorally cannibalistic, but also the propensity to develop specialized cannibal morphologies.  相似文献   

3.
Island populations may evolve distinct behavioral repertoires as a response to the conditions of insular life. Strong intraspecific competition is typical in insular lizards and may include cannibalism. In this study, we investigated sexual and age patterns of aggression in two populations of the Skyros wall lizard (Podarcis gaigeae), one from the main island of Skyros (Aegean Sea, Greece) and another from the satellite islet Diavates. The latter is terrestrial predator‐free biotope, hosting a dense population of large‐bodied lizards that have been reported to exert cannibalism. In staged encounters, we examined the aggressive propensities of adult male and female lizards against their age‐peers and juveniles. Males from both populations were much more aggressive than females toward juveniles and other adults. Males from Diavates were more frequently aggressive to juveniles and other male lizards than males from Skyros. Diavates cannibals also captured their targets at shorter latency. We ascribe this distinct behavioral pattern to the high population density. Infanticide and intramale aggressiveness confer two great advantages to cannibals: food and elimination of future rivals.  相似文献   

4.
A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co‐evolves with male coloration, such that guppy females from ‘low‐predation’ environments have stronger preferences for males with more orange/red coloration than do females from ‘high‐predation’ environments. Here, we show that colour vision also varies across populations, with ‘low’‐predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS‐1 and LWS‐3 (the most abundant LWS opsins) in ‘low‐predation’ populations than ‘high‐predation’ populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high‐ and low‐predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system.  相似文献   

5.
Cannibalistic interactions generally depend on the size relationship between cannibals and victims. In many populations, a large enough size variation to allow for cannibalism may not only develop among age‐cohorts but also within cohorts. We studied the implications of variation in hatching period length and initial cohort size for the emergence of cannibalism and bimodal size distributions within animal cohorts using a physiologically structured population model. We found that the development of size bimodality was critically dependent on hatching period length, victim density and the presence of a feedback via shared resources. Cannibals only gained enough energy from cannibalism to accelerate in growth when victim density was high relative to cannibal density at the onset of cannibalism. Furthermore, we found that the opportunity for early hatchers to initially feed on an unexploited resource increases the likelihood both for cannibalism to occur and size bimodality to develop. Once cannibals accelerated in growth relative to victims size bimodality, reduced victim numbers and relaxed resource competition resulted. Thus, in addition to that cannibals profited from cannibalism through energy extraction, their potential victims also benefited as the resource recovered due to cannibal thinning. To ensure recruitment success, it can be critical that a few individuals can accelerate in growth and reach a size large enough to escape size‐dependent predation and winter starvation. Hence, within‐cohort cannibalism may be a potentially important mechanism to explain recruitment variation especially for cannibalistic species in temperate climates with strong seasonality. However, the scope for size bimodality to develop as a result of cannibalism may be limited by low victim densities and size and food‐dependent growth rates.  相似文献   

6.
Synopsis Reznick and Endler investigated natural variation in life-history traits of populations of Trinidad guppies exposed to one of three intensities of predation: (i) high predation directed primarily at adults, (ii) moderate predation directed primarily at juveniles, and (iii) low predation. They were able to document significant interpopulational differences in life-history traits associated with this differential predation on a trait-by-trait basis. However, the present extended multivariate analysis indicates that (1) life-history traits do not differ significantly between populations exposed to moderate versus low predation, although both differ greatly from high-predation populations; (2) life-history variation is strongly unifactorial; and (3) despite the importance of predation effects, approximately 17% of the variation in life-history variables cannot be accounted for by predation intensity. Residual variation has no obvious geographical patterns, but instead seems to reflect local environmental variability. Life-history differences between predation regimes are consistent with residual patterns of variation within regimes, suggesting that local variation provides the raw material for extrapolation in response to predation, but also that it influences the direction of correlated change in life-history traits.  相似文献   

7.
In Trinidad, guppies (Poecilia reticulata) in high‐predation localities show more cohesive shoaling behaviour than those living with less dangerous predators in low‐predation sites. We evaluated the relative contributions of population origin (i.e. genetic and/or maternal effects) and social environment on the expression of shoaling by assessing the behaviour of juveniles reared in a range of social conditions. Focal individuals, offspring of guppies from populations from high‐ or low‐predation localities, were reared in a multifactorial experiment; we created four different social conditions by manipulating the source and demography of the conspecific residents with whom focal individuals interacted. We found that high‐predation fish displayed a stronger propensity to shoal than low‐predation ones. Our results also suggest a role for interactions between the source of the focal individuals, the demography of the group in which they were reared and the origin of the guppies with whom they were reared. Depending on their origin (high‐ vs. low‐ predation) and rearing density, our focal fish were more likely to shoal if they were reared with high‐predation residents. Learning from high‐predation residents, aggressive interactions with low‐predation residents and/or phenotype matching could have played a role in driving this effect of social environment. This effect of the phenotype of conspecifics on shoaling development would enhance heritable differences in shoaling propensity such that both could contribute to the well‐documented difference in shoaling behaviour of high‐ and low‐predation guppies in natural populations.  相似文献   

8.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

9.
Many fish species exhibit size‐assortative shoaling, which is often thought to be driven by predation risk. Recent fieldwork has revealed that guppies (Poecilia reticulata) are more size assorted in high‐predation populations than in low‐predation ones. However, size assortment does nonetheless occur in some low‐predation populations, suggesting that predation is unlikely the sole driving force behind size‐assortment. Here, we investigated in the laboratory the potential role of active choice in size‐assortative shoaling in wild‐caught female guppies originating from two populations of the same river system in Trinidad. Small or large focal females from each population were offered a binary choice of shoaling with either four small female conspecifics or four large ones. Observed shoaling preferences depended on the body size of the focal fish, suggesting phenotype‐mediated conflict over group composition. Large focal fish preferred to shoal with the size‐matched stimulus shoal of large fish. In contrast, small focal fish did not shoal assortatively but also preferred to shoal with larger females. Our results suggest that size‐assortative shoaling in female guppies is likely to be due to factors other than active choice, such as habitat segregation and sexual harassment.  相似文献   

10.
Precopulatory sexual cannibalism is an extreme form of sexual conflict that can entail significant costs to the cannibalized individual and a variety of costs and benefits to the cannibal itself. Characterizing these costs and benefits is fundamental to our understanding of how this behavior evolves. Using the spider Agelenopsis pennsylvanica, we tested the reproductive consequences of precopulatory sexual cannibalism by staging cannibalization events and comparing the performance of experimental cannibals against natural cannibals (i.e., those that cannibalized on their own) and non‐cannibals. We found two performance benefits associated with precopulatory sexual cannibalism: first, experimental cannibals were more likely to produce egg cases than non‐cannibals, and second, egg cases from experimental cannibals and natural cannibals were significantly more likely to hatch than those produced by non‐cannibals. We then tested whether males were more likely to approach the webs of experimental cannibals vs. non‐cannibalistic control females. Our data demonstrate that sexual cannibalism increases female attractiveness to males. Although this result seems counterintuitive, in fact, rates of precopulatory sexual cannibalism were much lower in females that had already cannibalized their first male: 38% of sexually naïve females engaged in precopulatory sexual cannibalism, whereas only 5% of females engaged in cannibalism a second time. Thus, males that approach cannibals receive two benefits: they are less likely to be cannibalized precopula, and they have the possibility of mating with females that have a higher probability of producing viable egg cases. Taken together, our data suggest that precopulatory sexual cannibalism affords females numerous benefits and may have a hand in shaping male mate choice decisions.  相似文献   

11.
Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator‐induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high‐ and low‐predation environments. We reared full‐siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high‐predation ecotype. However, when reared in the absence of predator cues, guppies from high‐ and low‐predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high‐ versus low‐predation environments. Thus, divergence in plasticity is due to phenotypic differences between high‐ and low‐predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by‐product of adaptation to the derived environment.  相似文献   

12.
Synopsis Sibling cannibalism in pike, Esox lucius, larvae and juveniles living in outdoor rearing ponds was studied using stomach contents analysis. For the two initial densities tested (6 and 18 larvae m–2, equivalent to 12 and 36 larvae m–3), cannibalism was non-existent during the larval period (13 to 35 mm total length) and was observed only during the juvenile stages. Initial density of larvae influenced both the date of first detection of cannibalistic individuals and the rate of development of cannibalism in the population. At initial stocking densities of 18 larvae m–2 (36 larvae m–3), cannibalism was observed from 21 days after the start of exogenous feeding (mean total length: 60 mm) onwards. At a mean total length of 100 mm and for initial stocking densities of 6 and 18 larvae m–2, (12 and 36 larvae m–3), the average proportions of cannibals in the populations of juveniles were 7.8% and 41.3% and the cannibals accounted for 15.5% and 65.9% of the total pike biomass, respectively. In stomachs of cannibals, young pike were the dominant prey in terms of weight. Dry weights of invertebrate-prey were lower in cannibals than in non-cannibals of similar size. Cannibalism among pike juveniles was characterized by the prey being swallowed whole and head first in the vast majority of cases. There was a strong positive correlation between predator and prey size and the mouth size of a cannibal was found to be an important constraint determining maximum victim size. The overall mean ratio of pike prey length to pike cannibal length was 66.2% and the average ratio of prey head depth to predator mouth width amounted to 87.6%. Prey size selection could be demonstrated for several length-groups of cannibals. These results are compared with the characteristics of early cannibalism in other fish species.  相似文献   

13.
1.?Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2.?This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3.?We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4.?The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5.?We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics.  相似文献   

14.
Environmental gradients often lead to the parallel evolution of populations and species. To what extent do such gradients also lead to parallel evolution of the sexes? We used guppies (Poecilia reticulata) to examine the parallel and independent (sex‐specific) aspects of population divergence in response to predation and habitat features. Geometric morphometrics was used to analyse size and shape variation for 1335 guppies from 27 to 31 sites sampled in each of 2 years. Body size showed strong parallel population divergence; both sexes were larger at sites with a more open canopy and with higher flow. Body shape showed a mixture of parallel and independent population divergence. The strongest and most consistent effects were (1) high‐predation sites had males with smaller heads and deeper caudal peduncles, (2) open‐canopy sites had females with smaller heads and more distended abdomens and (3) high‐flow sites had males and females with smaller heads and deeper caudal peduncles.  相似文献   

15.
Filial cannibalism (the consumption of one's own viable offspring) is common among fish with paternal care. In this study, I use a computer simulation to study simultaneous evolution of male filial cannibalism and female mate choice. Under certain conditions, selection on parental males favors filial cannibalism. When filial cannibalism increases a male's probability to raise the current brood successfully, filial cannibalism also benefits the female. However, when egg eating is a male investment into future reproduction, a conflict between female and male interests emerges. Here I investigate how female discrimination against filial cannibals affects evolution of filial cannibalism and how different female choice criteria perform against filial cannibalism. The introduction of discriminating females makes the fixation of filial cannibalism less likely. I introduced three different female choice criteria: (1) females who could discern a male's genotype, that is, whether the male was going to eat eggs as an investment in future reproductive events; (2) energy-choosing females that preferred to mate with males who had enough energy reserves to live through the current brood cycle without consuming eggs; and (3) females that preferred to mate with already mated males, that is, males with eggs in their nest. Genotype choice never coexisted with filial cannibals at fixation and filial cannibals were unable to invade a population with genotype-choosing females. Energy choice was successful only when males had high energy reserves and were less dependent on filial cannibalism as an alternative energy source. The egg choosers frequently coexisted with the cannibals at fixation. When the female strategies were entered simultaneously, the most frequent outcome for low mate sampling costs was that both the cannibals and the egg choice was fixed and all other strategies went extinct. These results suggest that sexual conflicts may not always evolve toward a resolution of the conflict, but sometimes the stable state retains the conflict. In the present case, this was because the egg-preference strategy had a higher fitness than the other female strategies. The outcome of this simulation is similar to empirical findings. In fish with paternal care, male filial cannibalism and female preference for mates with eggs commonly co-occur.  相似文献   

16.
Summary Prey of feeding juvenile and adult Dolomedes triton (Walckenaer 1837) were sampled over two seasons on three small ponds in central Alberta, Canada. Prey were mainly insects active at the water surface with truly aquatic species making up about 14% of the diet. Throughout the season aquatic and semi-aquatic Heteroptera represented about 30% of the prey. Diptera and adult Odonata were also important prey items but their abundance in the diet was more variable seasonally. Of the 625 prey items recorded nearly 50% were represented by taxa taken no more than once by spiders in one of the five size classes (adult females, adult males, large, intermediate and small juveniles). Large spiders did not take the smallest prey available, although small and intermediate-sized spiders fed on nearly the full size range taken by larger spiders. Cannibalism was common, accounting for 5% of the observations, with females and large juveniles as the most frequently observed cannibals. We hypothesize that intraguild predation (including cannibalism) could be an important coevolutionary force structuring phenology, population dynamics and microhabitat use of the predatory guild of the neuston community.  相似文献   

17.
Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low- and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low- and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range.  相似文献   

18.
Mating can increase an individual''s risk of mortality by predation. In response to predation hazards, males in some species court females less often, but alternatively engage in coerced copulations more frequently and females become less selective. Such predator-mediated shifts in mating tactics may result in higher levels of multiple inseminations in females and, thus, in greater frequencies of females with broods of mixed paternity. We tested this hypothesis using two polymorphic microsatellite loci to estimate conservatively multiple paternity in broods of female guppies (Poecilia reticulata) originating from ten natural populations that have evolved under different fish predation regimes in Trinidad. The frequency of broods that were multiply sired was significantly greater on average in populations experiencing high predation pressure compared to populations experiencing a relatively low predation risk. These results suggest that the intensity of male sperm competition covaries geographically with predation pressure in this species and that the local risk of predation mediates the opportunity for sexual selection within populations.  相似文献   

19.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

20.
Cannibalism, the act of preying on and consuming a conspecific, is taxonomically widespread, and putatively important in the wild, particularly in teleost fishes. Nonetheless, most studies of cannibalism in fishes have been performed in the laboratory. Here, we test four predictions for the evolution of cannibalism by conducting one of the largest assessments of cannibalism in the wild to date coupled with a mesocosm experiment. Focusing on mosquitofishes and guppies, we examined 17 species (11,946 individuals) across 189 populations in the wild, spanning both native and invasive ranges and including disparate types of habitats. We found cannibalism to be quite rare in the wild: most populations and species showed no evidence of cannibalism, and the prevalence of cannibalism was typically less than 5% within populations when it occurred. Most victims were juveniles (94%; only half of these appeared to have been newborn offspring), with the remaining 6% of victims being adult males. Females exhibited more cannibalism than males, but this was only partially explained by their larger body size, suggesting greater energetic requirements of reproduction likely play a role as well. We found no evidence that dispersal‐limited environments had a lower prevalence of cannibalism, but prevalence was greater in populations with higher conspecific densities, suggesting that more intense resource competition drives cannibalistic behavior. Supporting this conclusion, our mesocosm experiment revealed that cannibalism prevalence increased with higher conspecific density and lower resource levels but was not associated with juvenile density or strongly influenced by predation risk. We suggest that cannibalism in livebearing fishes is rare in the wild because preying on conspecifics is energetically costly and only becomes worth the effort when competition for other food is intense. Due to the artificially reduced cost of capturing conspecifics within confined spaces, cannibalism in captive settings can be much more frequent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号