首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
γ-Glutamyl-transpeptidase activity (EC 2.3.2.2) was found in ammonium sulfate precipitates of extracts from cultured cells of Nicotiana tabacum L. var. Samsun. Specific activity up to 3.2 nmol (mg protein)−1 min−1 was achieved, using the artificial substrate γ-glutamyl- p -nitroanilide (Km 0.6 m M ) instead of glutathione. Optimal enzyme activity was obtained at pH 8.0–8.5 and 45°C. The enzyme reaction was inhibited competitively by γ-glutamyl analogs (6-diazo-5-oxo-L-norleucine: Ki 0.76 μ M ; L-azaserine: Ki 0.23 m M ) or the inorganic ion m -periodate (Ki 0.43 m M ). Cell fractionation and in vivo experiments revealed that 77% of the γ-glutamyl-transpeptidase activity is localized in the soluble cytoplasmic fraction, while 20–23% of the enzyme is found on the outer surface of the plasmalemma.  相似文献   

2.
The synthesis of a series of gamma-glutamyl amines (gamma-Glu-amines), including gamma-Glu-dopamine, gamma-Glu-5-hydroxytryptamine, gamma-Glu-octopamine, gamma-Glu-tryptamine, gamma-Glu-tyramine, and gamma-Glu-phenylethylamine, by nervous tissue of the marine mollusc Aplysia californica is described. After ganglia were incubated in vitro with 14C-amines, the unchanged amine and a new 14C-labeled product, identified as the gamma-Glu conjugate of the amine, were isolated from the tissue extracts. Identification was made by comparing the chromatographic properties (HPLC, TLC, and LC) of the isolated conjugates with chemically synthesized gamma-Glu-amines before and after acid hydrolysis.  相似文献   

3.
Glutathione synthetase activity (EC 6.3.2.3) was analysed in ammonium sulfate precipitates of extracts l'rom photohetevotrophically grown cells of Nicotiana tabactm L. cv. Samsun by determination of glutathione as its monobromobimane derivative. Maximal enzyme activity was obtained at pH 8.0–9.0 in Tris-HCl and CHES as buffer systems. The enzyme showed an absolute requirement for Mg2+ and was slightly stimulated by K+. When Mg2+ was replaced by Mn2+ less synthetase activity was observed, and above 30 m M Mn2+ no activity was found. The enzyme was specific for glycine (KM = 0.308 m M ). No product formation was observed with ß -alanine and γ y-aminobutyrate using substrate conccntrations of 10 m M . The apparent KM values for γ -glutamylcysteine and γ -glutamyl- l -α-aminobutyrate were, respectively, 0.022 and 0.033 m M . By chloroplast Isolation ca 24% of the total glutathione synthetase activity of the cells could be shown to be localized in the chloroplasts, the rest being attributed to the cytoplasm of the tobacco cells.  相似文献   

4.
5.
Abstract: The rat brain enolases are dimers composed of α and γ subunits. At pH 8.6 αγ-enolase seemed to be stable, and no evidence was found for the possible formation of αγ-enolase from αα-enolase and γγ-enolase in the course of rat brain homogenization. During ontogeny of the rat forebrain, αγ-enolase was formed before γγ-enolase. The half-maximal specific concentrations were reached at postnatal days 14 and 23, respectively. The distribution of αγ- and γγ-enolase in various rat brain areas was also investigated. In all areas both forms were present. In neuroendocrine tissues αγ-enolase was present at a much higher concentration than γγ-enolase. The ratio between γγ-enolase and αγ-enolase may be indicative of the degree of neuronal maturation, a conclusion further substantiated by the high ratio observed in cerebellum and the low ratio observed in olfactory bulbs, both compared with the ratio in forebrain.  相似文献   

6.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

7.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

8.
A new dipeptide, alpha-(gamma-aminobutyryl)-hypusine, was identified in bovine brain. This compound was isolated from trichloroacetic acid-soluble fraction of bovine brain with five steps of ion-exchange chromatography. Its structure was postulated by routine chemical analyses and determined by synthesis. The amount of the compound isolated from 1.2 kg of bovine brain was 870 nmol.  相似文献   

9.
The effect of different treatments on amino acid levels in neostriatum was studied to throw some light on the synthesis and metabolism of gamma-aminobutyric acid (GABA). Irreversible inhibition of GABA transaminase by microinjection of gamma-vinyl GABA (GVG) led to a decrease in aspartate, glutamate, and glutamine levels and an increase in the GABA level, such that the nitrogen pool remained constant. The results indicate that a large part of brain glutamine is derived from GABA. Hypoglycemia led to an increase in the aspartate level and a decrease in glutamate, glutamine, and GABA levels. The total amino acid pool was decreased compared with amino acid levels in normoglycemic rats. GVG treatment of hypoglycemic rats led to a decrease in the aspartate level and a further reduction in glutamate and glutamine levels. In this case, GABA accumulation continued, although the glutamine pool was almost depleted. The GABA level increased postmortem, but there were no detectable changes in levels of the other amino acids. Pretreatment of the rats with hypoglycemia reduced both glutamate and glutamine levels with a subsequent decreased postmortem GABA accumulation. The half-maximal GABA synthesis rate was obtained when the glutamate level was reduced by 50% and the glutamine level was reduced by 80%.  相似文献   

10.
Brain microvessels form a tight blood-tissue permeability barrier and express high levels of specific enzymes, including gamma-glutamyl transpeptidase (GGTP). This differentiation is thought to be induced by perivascular astrocytes. By using histochemical methods, we found that the percentage of GGTP-positive vessels varied considerably in different areas of rat brain. Enzyme activity was not found in the pineal gland or the median eminence, where the blood-brain barrier is not expressed. In areas where the blood-brain barrier is expressed, the percentage of GGTP-positive vessels varied from 8% in the optic nerve to 100% in the anterior commissure. The neocortex showed a lower percentage of GGTP-positive vessels (2-15%) than anterior olfactory nucleus (42%), subiculum (70%), hippocampus (48%), and striatum (50-58%). Alkaline phosphatase, another brain microvessel-enriched enzyme, did not show these marked regional differences. The morphometric histochemical results were verified by enzymatic assays in homogenates of different regions from rat and bovine brain and in microvessel preparations of bovine putamen and neocortex. During the postnatal development of rat brain, the difference between neocortex and striatum appeared after day 20. The regional heterogeneity of brain microvessels may be caused by astrocytic heterogeneity and reflect regional heterogeneity in microvascular function.  相似文献   

11.
The distribution of alpha-(gamma-aminobutyryl)-hypusine was examined in several organs of the rabbit and in the brain of the rat, rabbit, dog, ox, and monkey. The peptide occurred only in the brains, but appeared to be absent from dog brain. Concentrations were higher in the cerebral hemispheres than in other portions of the brain. No significant difference between white and gray matter was observed.  相似文献   

12.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

13.
Abstract: The possibility that γ-hydroxybutyrate (GHB), a metabolite of γ-aminobutyric acid (GABA), may play a role in the CNS has recently come to attention. We describe here a sensitive and specific mass fragmento-graphic technique that allows the measurement of picomole amounts of GHB in single rat brain areas. Moreover, we show that GHB can accumulate postmortem, an effect that is blocked by the use of microwave irradiation to kill the animals. To understand further the relationship between GABA and GHB formation, we treated rats with drugs known to inferfere with GABA metabolism at different levels and concomitantly measured GABA and GHB in cerebral cortex and cerebellum. Isoniazide, which blocks the formation of GABA, also decreases GHB. Blockers of the catabolism of GABA, such as aminooxyacetic acid and γ-acetylenic GABA, increase GABA levels and decrease those of GHB. Sodium dipropylacetate increases both GABA and GHB, supporting the hypothesis that this effective antiepileptic drug also blocks in vivo the enzyme that converts succinic semialdehyde to succinic acid.  相似文献   

14.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   

15.
gamma-Aminobutyric acid (GABA) concentrations in human CSF are known to increase significantly after hydrolysis; however, the source of this increase has been unknown. Using either ion-exchange or reverse-phase chromatography coupled with on-line alkaline hydrolysis, we have shown 2-pyrrolidinone, the lactam of GABA, to be present in insufficient quantity to account for this increase. Subsequent experiments involving fraction collection of column eluents followed by acid hydrolysis and rechromatography demonstrated the presence of several previously undetected GABA-containing compounds.  相似文献   

16.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

17.
The rate of transamination of gamma-aminobutryic acid (GABA) catalyzed by hog brain gamma-aminobutyrate aminotransferase was substantially reduced when the hydrogen at the gamma-carbon position was replaced by deuterium. The deuterium isotope effect of this reaction has been substantiated by fluorometric, radiometric, and mass spectrometric procedures and assessed kinetically. The ratios of Vmax of the nonlabeled substrate/Vmax of the deuterated substrate obtained under different conditions ranged from 6 to 7. This indicates that the cleavage of the hydrogen from the gamma-carbon is the rate-determining step in GABA transamination. Similar isotope effects have also been shown to occur in the peripheral system in vivo.  相似文献   

18.
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance.  相似文献   

19.
Triethyllead (TEL), the active metabolite of tetraethyllead, was shown previously to inhibit selectively high-affinity Na+-dependent uptake of gamma-aminobutyric acid (GABA) into cerebrocortical synaptosomes. Such inhibition was not related to the Na+ gradient, Na+,K+-ATPase activity, [Cl-], or energy charge. We report here that TEL inhibits GABA binding to the presynaptic transporter involved in Na+-dependent uptake. Scatchard plot analysis of Na+-dependent [3H]GABA binding to a highly purified synaptic plasma membrane preparation revealed that 25 microM TEL reduced the Bmax by 44%, leaving the KD unchanged. This binding was reversible and predominantly involved membrane uptake sites, as characterized by pharmacological specificity to GABA ligands. Approximately 85% of specific GABA binding was considered membrane uptake site binding, as indicated by sensitivity to nipecotic acid and diaminobutyric acid, with relative insensitivity to muscimol, bicuculline methiodide, baclofen, and beta-alanine. With respect to previous data, these finding suggest that TEL inhibits Na+-sensitive high-affinity GABA uptake by interfering with GABA binding to its presynaptic transporter.  相似文献   

20.
Abstract: The intramuscular administration of L-cycloserine, gabaculine, and aminooxyacetic acid caused significant, time-dependent increases in the γ-aminobutyric acid (GABA) content of both whole brain and synaptosomalenriched preparations obtained from the tissue, a linear relationship being observed between the two parameters. In contrast, the administration of hydrazine resulted in a large increase in whole brain GABA level, with little change in the synaptosomal GABA content. The key factor in these different responses appeared to be the degree of inhibition of glutamic acid decarboxylase by the drugs. Pretreatment of mice with the GABA-elevating agents resulted in a delay in the onset of seizures, which was related directly to the increase in synaptosomal GABA content. Although the seizures were delayed, they occurred while the GABA content of nerve endings (synaptosomes) was above that in preparations from untreated animals. The decrease in GABA content at the onset of seizures, expressed as a percentage of the level at the time of injection of the convulsant agent, was, however, reasonably constant. A hypothesis to explain these results is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号