首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Previous studies have shown that biosynthesis of progesterone, the major steroid product of hen granulosa cells, increases during follicular maturation. However, the contribution of individual granulosa cells to the total progesterone production of each follicle is not known. The objective of the present study was to determine the presence and relative activity of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in individual granulosa cells isolated from each of the five largest yolk-filled preovulatory follicles of laying hens. 3 beta-HSD cytochemistry in the presence or absence of pregnenolone substrate was performed on digitonin-permeabilized granulosa cells in suspension. The stained cells were fixed in a 70% ethanol solution until 1) the percentage of cells from each follicle that stained dark blue-indicating the presence of 3 beta-HSD activity-was determined by counting under light microscopy, and 2) the intensity of staining-indicating the relative amount of enzyme activity-was quantified using video image analysis. There were three findings. First, 100% of granulosa cells from each of the five largest preovulatory follicles stained positively for the presence of 3 beta-HSD activity. Second, the amount of 3 beta-HSD activity was normally distributed among granulosa cells in the population from each follicle. Third, as follicles matured from the fifth largest to the largest follicle, 3 beta-HSD activity increased steadily in individual cells, as indicated by increased staining intensities. The results indicate uniformity in the steroidogenic capacity of cells in the granulosa layer of hen preovulatory follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The avian inner perivitelline layer (IPVL) contains zona pellucida protein-B1 (ZPB1), zona pellucida protein-C (ZPC) and zona pellucida protein-D (ZPD). These three proteins may be involved in sperm binding to the IPVL. ZPB1 is produced by the liver and transported to the developing preovulatory follicle, while ZPC and ZPD are synthesized and secreted by the granulosa cells of the preovulatory follicle. The mRNA of ZPB1, ZPC, and ZPD was investigated in two lines of turkey hens selected for over 40 generations for either increased egg production (E line) or increased body weight (F line). Total RNA was extracted from the liver and from 1cm(2) sections of the granulosa layer around the germinal disc and a nongerminal disc area of the F(1) and F(2) follicles of hens from each genetic line. Northern analysis was performed using chicken cDNA probes for all three ZP proteins. Hepatic mRNA for ZPB1 was greater (P<0.05) in turkey hens from the E line than the F line. Although, there was no difference in ZPC mRNA between the germinal disc and nongerminal disc region of the two largest follicles in E line hens, ZPC mRNA was greater in the nongerminal disc region compared to the germinal disc region in the two largest follicles obtained from the F line hens. There were no differences in ZPD mRNA between the germinal disc and nongerminal disc regions of the F(1) and F(2) follicles for either genetic line. The results suggest that the greater rates of fertility previously observed in eggs from the E line hens compared with the F line of hens may be related to differential amounts of the potential sperm binding proteins ZPB1 and ZPC.  相似文献   

3.
The expression patterns of steroidogenic enzymes in ovarian antral follicles at various stages of growth in a follicular wave have not been reported for sheep. Ovaries were collected from ewes (n=4-5 per group) when the largest follicle(s) of the first wave of the cycle, as determined by ultrasonography, reached (i) 3 mm, (ii) 4 mm, (iii) > or =5 mm in diameter or when there was a single (iv) preovulatory follicle in the last wave of the cycle, 12h after estrus detection. The expression pattern of steroidogenic enzymes was quantified using immunohistochemistry and grey-scale densitometry. The expression of CYP19 in the granulosa and 3beta-HSD and CYP17 in the theca increased (P<0.01) progressively from 3 to > or =5 mm follicles in the first wave of the cycle and was lower (P<0.01) in the preovulatory follicle compared to > or =5 mm follicles. However, the expression of 3beta-HSD in the granulosa increased (P<0.05) from 3 to > or =5 mm follicles and was maintained (P<0.05) at a high level in the preovulatory follicles. The amount of CYP19 in the granulosa of the growing follicles correlated positively (r=0.5; P<0.03) with the concurrent serum estradiol concentrations. We concluded that the expression pattern of steroidogenic enzymes in theca and granulosa of follicles growing in each wave in the ewe, paralleled with serum estradiol concentrations, with the exception that concentrations of 3beta-HSD in granulosa increased continuously from follicles 3mm in diameter to the preovulatory follicle.  相似文献   

4.
5.
The hormonal and second messenger regulation of plasminogen activator (PA) activities in avian granulosa and theca cells has been documented. However, the physiological role(s) of PAs in the avian ovary remains poorly understood. The present studies were designed to evaluate PA activity in hen granulosa cells collected from the most mature (F1) preovulatory follicle at three discrete time points relative to a spontaneous ovulation and from follicles collected at various stages of follicular development. Levels of PA activity in the granulosa layer of the F1 follicle declined by greater than 90% as follicles were collected closer to their anticipated time of ovulation (e.g., from 17-16 h to 0.75-0.15 h; p less than 0.05). Timing of tissue collection was confirmed by evaluation of serum progesterone levels, which peaked as expected at the 6-5-h time point. During follicular development, PA activity was several times greater in rapidly growing follicles (6-12 mm, 1-3 wk prior to ovulation) than in slowly growing (1-5 mm) or preovulatory (F3 and F1) follicles (p less than 0.05). Granulosa cells of these rapidly growing follicles also incorporated significantly higher levels of 3H-thymidine than did granulosa cells of mature follicles (p less than 0.05), suggesting a higher level of DNA synthesis. Similarly, granulosa cells of the mitotically active germinal disc region of the F1 granulosa layer were found to possess at least 3-fold higher (p less than 0.05) levels of PA activity and a 2-fold greater level of 3H-thymidine incorporation than the more mature granulosa cells isolated from the remaining F1 granulosa layer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

7.
Anti-mullerian hormone (AMH) has a critical role in regression of the mullerian duct system during development in male mammalian and avian species and in regression of the right oviduct in female avian species. AMH in adult female birds has not been investigated. Chicken-specific cDNA primers were used to isolate Amh by RT-PCR. This probe was used in Northern blot analysis to identify a 2.8-kb band with expression in total ovarian RNA and in granulosa cell RNA. Quantitative real-time PCR was used to assess Amh expression in follicles of different maturity (1, 3, 5, and 6-12 mm and the largest F1 follicle; n = 4-6 of each size). There was an increased amount of Amh mRNA in the granulosa layer of the smaller follicles and a lower amount in the granulosa layer of the larger follicles (P < 0.01). There was no difference in granulosa Amh expression between the germinal disc and non-germinal disc region of 6- to 12-mm follicles, although expression differed with follicle size (P < 0.01). To examine hormone regulation of Amh, granulosa cells (from 6- to 8-mm follicles) were cultured with various concentrations of estradiol (E(2)) and progesterone (P(4)), and Amh mRNA was assessed. Neither E(2) nor P(4) influenced Amh mRNA accumulation. Granulosa cells were also cultured in the presence of oocyte-conditioned medium (OCM), which decreased Amh mRNA expression in a dose-related manner (P < 0.05); FSH receptor expression was not affected. Heat treatment of OCM abolished the effect, but growth differentiation factor 9 antiserum did not block the suppression. Immunohistochemistry confirmed that the granulosa layer was the predominant source of AMH in the small follicles of the hen and indicated that AMH was present early in follicle development, with expression in very small follicles (approximately 150 mum).  相似文献   

8.
The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase: EC 1.1.1.34) was measured in a microsomal preparation of the granulosa of rapidly growing ovarian follicles of laying hens in the late preovulatory period (2-3 h before expected ovulation). The specific activity of the enzyme was measured in the five largest (F1-F5) preovulatory follicles, F1 being the follicle destined to ovulate first. Enzyme activity increased concomitantly with follicle size. The apparent Km of the enzyme decreased 60-80% from the smallest to the largest preovulatory follicle. There was no significant change in the Vmax during follicle development. Although our results have demonstrated the presence of HMG/CoA reductase in chicken granulosa cells and the progressive increase of its activity with follicular maturation, the quantitative significance of de-novo synthesized cholesterol as steroid hormone precursor remains to be ascertained.  相似文献   

9.
The objective of the present study was to compare the structural and functional features of cells derived from histologically different regions of the granulosa cell layer of hen preovulatory follicles. Granulosa cells were isolated from a 0.8-1.5-cm diameter region of the granulosa layer overlying the germinal disc (GD) or from the remainder of the granulosa layer peripheral to the disc region (GP). In the first study, the isolated cells were prepared from each region of the five largest preovulatory follicles; fixed; stained with fluorescent dyes for DNA, total protein, and RNA; and analyzed by use of multiparameter flow cytometry. A greater percentage of cells from the GD region than from the GP region were in proliferative (S and G2/M) stages of the cell cycle in the four largest follicles. In addition, GD cells had lower relative protein content than GP cells in the two largest follicles. In the second study, progesterone biosynthesis in response to treatment with luteinizing hormone (LH) or forskolin was examined in granulosa cells from the GD and the GP regions of the largest preovulatory follicles. GP cells had greater responsiveness to the treatments than GD cells. In addition, conversion of 25-hydroxy-cholesterol to progesterone was greater in GP cells than in GD cells. There were no differences in cyclic adenosine 3',5'-monophosphate (cAMP) production by GD and GP cells in response to LH or forskolin or in the ability of cells from each region to convert pregnenolone substrate to progesterone via 3 beta-hydroxysteroid dehydrogenase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In the ovarian follicle, anti-Müllerian hormone (Amh) mRNA is expressed in granulosa cells from primary to preovulatory stages but becomes restricted to cumulus cells following antrum formation. Anti-Müllerian hormone regulates follicle development by attenuating the effects of follicle stimulating hormone on follicle growth and inhibiting primordial follicle recruitment. To examine the role of the oocyte in regulating granulosa cell Amh expression in the mouse, isolated oocytes and granulosa cells were co-cultured and Amh mRNA levels were analysed by real-time RT-PCR. Expression in freshly isolated granulosa cells increased with preantral follicle development but was low in the cumulus and virtually absent in the mural granulosa cells of preovulatory follicles. When preantral granulosa cells were co-cultured with oocytes from early preantral, late preantral or preovulatory follicles, and when oocytes from preovulatory follicles were co-cultured with cumulus granulosa cells, Amh expression was increased at least 2-fold compared with granulosa cells cultured alone. With oocytes from preantral but not preovulatory follicles, this was a short-range effect only observed with granulosa cells in close apposition to oocytes. We conclude that stage-specific oocyte regulation of Amh expression may play a role in intra- and inter-follicular coordination of follicle development.  相似文献   

11.
The role of catecholamines in ovarian function of the domestic hen has not been examined extensively. The aim of this study was first to determine the location of catecholamines in the preovulatory follicle of the domestic hen. Second, norepinephrine (NE), epinephrine (EPI) and dopamine (DA) were measured in the isolated theca layer of the five largest preovulatory follicles at specific times during the ovulatory cycle and changes in catecholamine content were correlated with ovarian events. The five largest preovulatory follicles were removed from chickens at 24, 18, 12, 6 and 2 h before ovulation of the largest (F1) follicle. Theca and granulosa layers were isolated, frozen, weighed and prepared for measurements of catecholamines by the double isotope radio-enzymatic assay. Catecholamines were localized primarily in the theca layer with only small amounts present in the granulosa layer. Norepinephrine was present in the theca layer in concentrations 6- and 30-fold those of EPI and DA, respectively. The content of NE and EPI in the theca layer of the F1 follicle was significantly (p less than 0.01) higher at 6 h before ovulation than at other times for the F1 follicle. In contrast, NE and EPI content of the theca layer of second (F2) and third (F3) largest follicles did not change during the ovulatory cycle. The content of DA was elevated (p less than 0.05) at 12 h before ovulation in F1 and F2 follicles. There was a significant reduction in NE in the theca layer of the fifth largest (F5) follicle between 24 and 18 h before ovulation of the F1 follicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Steroidogenesis is a major function of the developing follicle. However, little is known about the stage of onset of steroid regulatory proteins during follicular development in sheep. In this study, several steroidogenic enzymes were studied by immunohistochemistry and/or in situ hybridization; cytochrome P450 side chain cleavage (P450(scc)), cytochrome P450 17alpha-hydroxylase (17alphaOH), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), cytochrome P450 aromatase (P450(arom)), steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR), and LH receptor (LH-R). To define the stages of follicular growth, ovarian maps were drawn from serial sections of ovine ovaries, and follicles were located and classified at specific stages of growth based on morphological criteria. In this way, the precise onset of gene expression with respect to stages of follicular growth for all these proteins could be observed. The key findings were that ovine oocytes express StAR mRNA at all stages of follicular development and that granulosa cells in follicle types 1-3 express 3beta-HSD and SF-1. Furthermore, the onset of expression in theca cells of StAR, P450(scc), 17alphaOH, 3beta-HSD, and LH-R occurred in large type 4 follicles just before antrum formation. This finding suggests that although the theca interna forms from the type 2 stage, it does not become steroidogenically active until later in development. These studies also confirm that granulosa cells of large type 5 follicles express SF-1, StAR, P450(scc), LH-R, and P450(arom) genes. These findings raise new questions regarding the roles of steroidogenic regulatory factors in early follicular development.  相似文献   

15.
Studies in both mammalian and nonmammalian ovarian model systems have demonstrated that activation of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways modulates steroid biosynthesis during follicle development, yet the collective evidence for facilitory versus inhibitory roles of these pathways is inconsistent. The present studies in the hen ovary describe the changing role of MAPK and PKC signaling in the regulation of steroidogenic acute regulatory protein (STAR) expression and progesterone production in undifferentiated granulosa cells collected from prehierarchal follicles prior to follicle selection versus differentiated granulosa from preovulatory follicles subsequent to selection. Treatment of undifferentiated granulosa cells with a selective epidermal growth factor receptor (EGFR) and ERBB4 receptor tyrosine kinase inhibitor (AG1478) both augments FSH receptor (Fshr) mRNA expression and initiates progesterone production. Conversely, selective inhibitors of both EGFR/ERBB4 and MAPK activity attenuate steroidogenesis in differentiated granulosa cells subsequent to follicle selection. In addition, inhibition of PKC signaling with GF109203X augments FSH-induced Fshr mRNA plus STAR protein expression and initiates progesterone synthesis in undifferentiated granulosa cells, but inhibits both gonadotropin-induced STAR expression and progesterone production in differentiated granulosa. Granulosa cells from the most recently selected (9- to 12-mm) follicle represent a stage of transition as inhibition of MAPK signaling promotes, while inhibition of PKC signaling blocks gonadotropin-induced progesterone production. Collectively, these data describe stage-of-development-related changes in cell signaling whereby the differentiation-inhibiting actions of MAPK and PKC signaling in prehierarchal follicle granulosa cells undergo a transition at the time of follicle selection to become obligatory for gonadotropin-stimulated progesterone production in differentiated granulosa from preovulatory follicles.  相似文献   

16.
Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400–760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and green monochromatic lights promote egg production traits via stimulating gonadal hormone secretion and up-regulating expression of ERs and PRs. Changes in PR-B protein suggest that this form of the progesterone receptor is predominant for progesterone action in the granulosa layers of preovulatory follicles in chickens during light stimulation.  相似文献   

17.
Immunolocalization of 3 beta-hydroxysteroid dehydrogenase in human ovary   总被引:1,自引:0,他引:1  
Immunohistochemical localization of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) was performed in 55 cases of morphologically normal human ovaries by using a specific polyclonal antibody against purified human placental 3 beta-HSD. In small developing follicles, immunoreactivity was observed only in the theca interna but also became recognizable in the membrana granulosa with development of the follicle. At a late stage of folliculogenesis, the intensity of the 3 beta-HSD activity in the membrana granulosa was nearly equal to that of theca interna in 2 or 3 large follicles examined. One to several layers of theca interna cells just beneath membrana granulosa did not demonstrate any immunoreactivity of 3 beta-HSD or that of cytochrome P-450 17 alpha-hydroxylase. These unstained theca interna cells did not appear to be directly involved in ovarian steroidogenesis and might be designated as 'enzymically inactive theca interna cells.' Marked immunoreactivity was observed in luteinized theca and granulosa cells of the corpus luteum.  相似文献   

18.
A protein fraction (GF2) was purified from sheep ovarian follicular fluid. Its action on 3 beta-HSD activity in the mouse granulosa cells was measured in an in vitro system. The fraction (GF2) caused dose-dependent depletion of the 3 beta-HSD activity in granulosa cells and progesterone in the spent medium. A maximum inhibition of the activity was achieved after 30 min incubation of the granulosa cells with the GF2 fraction. Further purified HPLC fraction (Fr1) also inhibited 3 beta-HSD activity. In vivo administration of the GF2 fraction in normal cycling female mice also decreased the 3 beta-HSD activity in the granulosa cells of the ovarian follicles and plasma progesterone levels indicating the GF2 fraction to be a 3 beta-HSD inhibitor.  相似文献   

19.
Both the viability of hen prehierarchal follicles and subsequent differentiation associated with the selection of a single follicle per day into the preovulatory hierarchy depend on circulating FSH and the expression of FSH receptor (FSH-R) in granulosa cells. The present study addresses mechanisms that mediate both basal expression plus selective up-regulation of FSH-R mRNA in granulosa cells from prehierarchal follicles. Results demonstrate that FSH-R mRNA is both expressed and functional in granulosa cells collected from growing prehierarchal follicles as small as those of 1-2 mm in diameter, as indicated by rapid induction of steroidogenic acute regulatory (StAR) protein expression by FSH in vitro. Real-time polymerase chain reaction determined that relative FSH-R expression within the granulosa layer from individual prehierarchal follicles of 6-8 mm in diameter was similar among the 8-13 follicles within this cohort, with the notable exception that the granulosa layer from a single follicle (presumably the selected follicle) showed elevated expression. Levels of FSH-R mRNA expression were enhanced by both recombinant human (rh) transforming growth factor (TGF) beta1 and, to a lesser extent, rh-activin A after 20 h of culture. This stimulatory effect was effectively blocked by mitogen-activated protein (MAP) kinase signaling induced by TGF alpha treatment. Finally, inhibition of MAP kinase signaling, using the selective inhibitor U0126, promoted FSH-R expression and further enhanced TGF beta1-induced FSH-R expression in vitro. Collectively, results suggest that premature granulosa cell differentiation normally is suppressed by tonic MAP kinase signaling. At the time of follicle selection, a release from inhibitory MAP kinase signaling is proposed to occur, which enables the full potentiation of FSH-R expression mediated by intrafollicular factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号