首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During a routine prenatal diagnosis we detected a female fetus with an apparent terminal deletion of an X chromosome with a karyotype 46,X,del(X)(q25); the mother, who later underwent premature ovarian failure, had the same Xq deletion. To further delineate this familial X deletion and to determine whether the deletion was truly terminal or, rather, interstitial (retaining a portion of the terminal Xq28), we used a combination of fluorescence in situ hybridization (FISH) and Southern analyses. RFLP analyses and dosage estimation by densitometry were performed with a panel of nine probes (DXS3, DXS17, DXS11, DXS42, DXS86, DXS144E, DXS105, DXS304, and DXS52) that span the region Xq21 to subtelomeric Xq28. We detected a deletion involving the five probes spanning Xq26-Xq28. FISH with a cosmid probe (CLH 128) that defined Xq28 provided further evidence of a deletion in that region. Analysis with the X chromosome-specific cocktail probes spanning Xpter-qter showed hybridization signal all along the abnormal X, excluding the possibility of a cryptic translocation. However, sequential FISH with the X alpha-satellite probe DXZ1 and a probe for total human telomeres showed the presence of telomeres on both the normal and deleted X chromosomes. From the molecular and FISH analyses we interpret the deletion in this family as 46,X,del(X) (pter-->q26::qter). In light of previous phenotypic-karyotypic correlations, it can be deduced that this region contains a locus responsible for ovarian maintenance.  相似文献   

2.
Physical mapping of unique nucleotide sequences on identified rice chromosomes   总被引:10,自引:0,他引:10  
A physical mapping method for unique nucleotide sequences on specific chromosomal regions was developed combining objective chromosome identification and highly sensitive fluorescence in situ hybridisation (FISH). Four unique nucleotide sequences cloned from rice genomic DNAs, varying in size from 1.3 to 400 kb, were mapped on a rice chromosome map. A yeast artificial chromosome (YAC) clone with a 399 kb insert of rice genomic DNA was localised at the distal end of the long arm of rice chromosome (1q2.1) and a bacterial artificial chromosome (BAC) clone (180 kb) containing the rice leaf blast-resistant gene (Pi-b) was shown to occur at the distal end of the long arm of chromosome 2 (2q2.1). A cosmid (35 kb) with the resistance gene (Xa-21) against bacterial leaf blight was mapped on the interstitial region of the long arm on chromosome 11 (11q1.3). Furthermore a single RFLP marker, 1.29 kb in size, was mapped successfully to the distal region of the long arm of rice chromosome 4 (4q2.1). For precise localisation of the nucleotide sequences within the chromosome region, image analyses were effective. The BAC clone was localised to the specific region, 2q2.1:96.16, by image analysis. The result was compared with the known location of the BAC clone on the genetic map and the consistency was confirmed. The effectiveness and reliability in physically mapping nucleotide sequences on small plant chromosomes achieved by the FISH method using a variety of probes was unequivocally demonstrated.  相似文献   

3.
Interstitial deletions are not the main mechanism leading to 18q deletions.   总被引:5,自引:1,他引:4  
Most patients who present with the 18q- syndrome have an apparent terminal deletion of the long arm of chromosome 18. For precise phenotypic mapping of this syndrome, it is important to determine whether the deletions are terminal deletions or interstitial deletions. A human telomeric YAC clone has been identified that hybridizes specifically to the telomeric end of 18q. This clone was characterized and used to analyze seven patients with 18q deletions. By FISH and Southern blotting analysis, all patients were found to lack this chromosomal region on their deleted chromosome, demonstrating that the patients do not have cryptic interstitial deletions.  相似文献   

4.
We performed an investigation of two unrelated cases with extremal variants of chromosome 21 without visible materials of the short arms (Christchurch or Ch1 chromosome). In the first case chromosome 21p- was initially detected during routine cytogenetic amniocentesis. Chromosomal variant was inherited from phenotypically normal father to phenotypically normal fetus (phenotypically normal boy after the birth). The second case of chromosome 21p- was detected in 7 years old boy, referred to cytogenetic analysis due to mental retardation and mild congenital malformation, including prenatal hypoplasia, microcephaly, low-set dysplastic ears, short nose, micrognatia, short neck. Molecular characterization of 21p-variant chromosomes was performed by the use of FISH with DNA probes specific to the short arm and centromeric region of chromosome 21 (telomeric, beta-satellite, ribosomal, classical satellite and alphoid DNA probes). Chromosomes 21p-hybridized positively only with telomeric DNA at both chromosomal ends and alphoid DNA probes at centromeric region of the first patient. In second case (de novo deletion of 21p), the Ch1 was associated with clinical phenotype and loss of telomeric and subtelomeric DNA in the p-arm of chromosome 21. Therefore, the complete absent of the short arm of chromosome 21 may be considered as abnormal. We propose that de novo deletion 21p- could have negative consequences due to absence of large portion of chromosomal DNA from the p-arm (telomeric, satellite or ribosomal DNAs) and following imbalance in organization and functioning of genome.  相似文献   

5.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

6.
A cloned 2.2 Eco RI segment of interspersed repetitive DNA was hybridized to genomic DNA from a mentally retarded patient with an interstitial deletion in the long arm of one chromosome 12 (12q-). Under hybridization conditions of high stringency, one prominent 2.2-kilobase (kb) Eco RI fragment demonstrated reduced autoradiographic intensity in the 12q- sample compared with several normal controls. These findings indicate that the genomic location for one of the highly or perfectly homologous 2.2-kb Eco RI fragments is in chromosome region 12q21q22, and suggest that a low-copy repetitive DNA probe as used here may have practical utility, as in detecting small deletions or other chromosome alterations.  相似文献   

7.
Summary We report a patient (S.T.) with multiple congenital anomalies and developmental delay associated with an interstitial deletion of 1q23–1q25. Molecular analysis of the deletion was performed using DNA markers that map to 1q. Five DNA markers, MLAJ-1 (D1S61), CRI-L1054 (D1S42), HBI40 (D1S66), OS-6 (D1S75), and BH516 (D1S110), were demonstrated to be deleted. Informative polymorphisms demonstrated this to be a de novo deletion of the maternally derived chromosome. Deletion status was determined using restriction fragment length polymorphism (RFLP) analysis supplemented with densitometry in the experiments where RFLP analysis was not fully informative. Deletions were confirmed by Southern analysis using genomic DNA from a somatic cell hybrid retaining the del(1)(q23–q25) chromosome that was constructed from patient S.T. Flow karyotyping confirmed the deletion and estimated that the deletion encompassed 11,000–16,000 kb. The clinical and cytogenetic characteristics of S.T. are compared with those of ten previously described patients with monosomy 1q21–1q25.  相似文献   

8.
Summary Application of a method for the fine structure analysis of unbalanced chromosomal rearrangements using quantitative Southern blot analysis has established that an individual of normal intelligence and largely normal appearance has a significant interstitial deletion of chromosome 21. Using high resolution cytogenetic analysis and molecular analysis with five single copy DNA sequences unique to chromosome 21 and a probe for human SOD1 (CuZn, Superoxide dismutase), we find that the deletion extends from the border of bands 21q11.1–11.2 and extends to the border of bands 21q21.2–q21.3. The latter border is established molecularly by the presence of two copies of SOD1, previously mapped to band 21q22.1, and of four single copy sequences known to be located distal to this region. The presence of SOD1 was confirmed by enzyme dosage analysis. These findings demonstrate that deletion of close to 20,000kb of autosomal material is compatible with normal intelligence. Further, they suggest that chromosome 21 may include a large region of relative developmental neutrality whose molecular basis may now be investigated. Because of the limits of even high resolution cytogenetic analysis, fine structure molecular analyses of this type will be necessary to reliably detect and define similar small chromosomal deletions or insertions. The molecular definition of such aneuploidy provides the basis for increasing the resolution of the human physical genetic map.  相似文献   

9.
Intrachromosomal duplications play a significant role in human genome pathology and evolution. To better understand the molecular basis of evolutionary chromosome rearrangements, we performed molecular cytogenetic and sequence analyses of the breakpoint region that distinguishes human chromosome 3p12.3 and orangutan chromosome 2. FISH with region-specific BAC clones demonstrated that the breakpoint-flanking sequences are duplicated intrachromosomally on orangutan 2 and human 3q21 as well as at many pericentromeric and subtelomeric sites throughout the genomes. Breakage and rearrangement of the human 3p12.3-homologous region in the orangutan lineage were associated with a partial loss of duplicated sequences in the breakpoint region. Consistent with our FISH mapping results, computational analysis of the human chromosome 3 genomic sequence revealed three 3p12.3-paralogous sequence blocks on human chromosome 3q21 and smaller blocks on the short arm end 3p26-->p25. This is consistent with the view that sequences from an ancestral site at 3q21 were duplicated at 3p12.3 in a common ancestor of orangutan and humans. Our results show that evolutionary chromosome rearrangements are associated with microduplications and microdeletions, contributing to the DNA differences between closely related species.  相似文献   

10.
染色体畸变是恶性肿瘤细胞的重要遗传学特征, 文章旨在应用BAC DNA克隆鉴定食管癌细胞中的染色体臂和染色体区段的畸变。针对染色体各区段选取5~10个1 Mb BAC DNA, 分别混合制备成特定染色体区段的BAC DNA混合克隆, 然后将染色体臂上覆盖所有区段的上述混合克隆进一步混合制备成特定染色体臂BAC DNA混合克隆。利用简并寡核苷酸引物聚合酶链反应(Degenerate oligonucleotide primed PCR, DOP-PCR)标记染色体臂探针, 利用切口平移法(Nick translation)标记染色体区段探针, 并对食管癌细胞中期染色体进行荧光原位杂交(Fluorescence in situ hybridization, FISH)分析。正常人外周血淋巴细胞中期染色体FISH结果显示, 上述方法标记的探针具有较高的特异性。进一步利用染色体臂混合探针, 确定了多个食管癌细胞中的染色体重排所涉及的特定染色体臂; 利用染色体区段混合探针, 鉴定出KYSE140的t(1q;7q)衍生染色体中1q上的断点范围位于1q32-q41。文章成功建立了1 Mb BAC DNA混合克隆探针标记技术, 并鉴定出多个食管癌细胞中的染色体臂和染色体区段畸变, 不仅为利用M-FISH技术鉴定肿瘤细胞中的染色体畸变提供了更为准确的方法, 而且还可能进一步将该法推广应用于恶性血液病的核型分析以及产前诊断。  相似文献   

11.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

12.
Complete monosomy mosaic of chromosome 21 is a rare disorder. The syndromic features are highly variable. This study describes a girl of Mexican origin with complete monosomy 21 in mosaicism with novel findings, including cortical atrophy, macrostomia, pectum excavatum and immune deficiencies. Parental karyotypes were normal. FISH analysis with probes from 21q22.1–q22.2 region and centromere of X DNA probe was performed on peripheral blood lymphocytes whereas 21q22.1–q22.2 and 21q, 4p, 4q subtelomeric DNA probes were tested in fibroblasts. We propose that the monosomy 21 mosaicism is the cause of the survival of children with more than 4 months of age.  相似文献   

13.
We report a patient with an interstitial 14q32.1-->q32.3 deletion and review the literature. The adult patient presented with moderate mental retardation, a friendly behavior and a non-specific phenotype. The deletion seemed to be terminal but with FISH probes appeared to be interstitial. Comparison with other 14q terminal and interstitial deletion patients reported in literature and those with a ring 14 chromosome is given.  相似文献   

14.
De novo satellited 21q associated with corpus callosum dysgenesis, colpocephaly, a concealed penis, congenital heart defects, and developmental delay: We present clinical and cytogenetic data on an infant with de novo satellited 21 q. A 3-month-old boy was found to have microcephaly, developmental delay, hypertelorism, down-slanting palpebral fissures, large low-set ears, a prominent nose, a broad philtrum, a concealed penis, interventricular septal defects, corpus callosum dysgenesis, colpocephaly, ventriculomegaly, and a de novo karyotype of 46,XY,21qs. Standard Ag-NOR staining and FISH studies confirmed a satellite and a deletion on the long arm of a chromosome 21. Quantitative-fluorescent polymerase chain reaction using the polymorphic small tandem repeat markers specific for chromosome 21 determined a maternal origin of the deletion and the breakpoint between D21S156 (21q22.1) (present) and D21S53 (21q22.3) (absent), centromeric to the known minimal holoprosencephaly critical region, D21S13-21qter. The present case provides evidence of the correlation of a distal region of chromosome 21 to the phenotypic effects of monosomy 21.  相似文献   

15.
Chromosomal rearrangements are common in humans. Pericentric inversions are among the most frequent aberrations (1–2%). Most inversions are balanced and do not cause problems in carriers unless one of the breakpoints disrupts important functional genes, has near submicroscopic copy number variants or hosts “cryptic” complex chromosomal rearrangements. Pericentric inversions can lead to imbalance in offspring. Less than 3% of Down syndrome patients have duplication as a result of parental pericentric inversion of chromosome 21. We report a family with an apparently balanced pericentric inversion of chromosome 21. The proband, a 23-year-old female was referred for prenatal diagnosis at 16 weeks gestation because of increased nuchal translucency. She has a familial history of Down's syndrome and moderate intellectual disability, a personal history of four spontaneous abortions and learning difficulties. Peripheral blood and amniotic fluid samples were collected to perform proband's and fetus' cytogenetic analyses. Additionally, another six family members were evaluated and cytogenetic analysis was performed. Complementary FISH and MLPA studies were carried out. An apparent balanced chromosome 21 pericentric inversion was observed in four family members, two revealed a recombinant chromosome 21 with partial trisomy, and one a full trisomy 21 with an inverted chromosome 21. Array CGH analysis was performed in the mother and the brother's proband. MLPA and aCGH studies identified a deletion of about 1.7 Mb on the long arm of inverted chromosome 21q22.11. We believe the cause of the intellectual disability/learning difficulties observed in the members with the inversion is related to this deletion. The recombinant chromosome 21 has a partial trisomy including the DSCR with no deletion. The risk for carriers of having a child with multiple malformations/intellectual disability is about 30% depending on whether and how this rearrangement interferes with meiosis.  相似文献   

16.
Chen YF  Kou PL  Tsai SJ  Chen KF  Chan HH  Chen CM  Sun HS 《Genomics》2006,87(2):290-297
The low-copy repeat (LCR) is a new class of repetitive DNA element and has been implicated in many human disorders, including DiGeorge/velocardiofacial syndrome (DGS/VCFS). It is now recognized that nonallelic homologous recombination (NAHR) through LCRs flanking the chromosome 22q11.2 region leads to genome rearrangements and results in the DGS/VCFS. To refine the structure and content of chromosome 22q11.2 LCRs, we applied computational analysis to dissect region-specific LCRs using publicly available sequences. Nine distinct duplicons between 1.6 and 65 kb long and sharing >95% sequence identity were identified. The presence of these sequence motifs supports the NAHR mechanism. Further sequence analysis suggested that the previously defined 3-Mb deletion may actually comprise two deletion intervals of similar size close to each other and thus indistinguishable when using fluorescence in situ hybridization (FISH) analysis. The differentially deleted regions contain several hypothetical proteins and UniGene clusters and may partially explain the clinical heterogeneity observed in DGS/VCFS patients with the 3-Mb common deletion. To implement further sequence information in molecular medicine, we designed a real-time quantitative PCR assay and validated the method in 122 patients with suspected DGS/VCFS. The assay detected 28 patients with chromosome 22q11.2 deletion later confirmed using FISH. Our results indicated that the developed assay is reliable as well as time and cost effective for clinical diagnosis of chromosome 22q11.2 deletion. They also suggest that this methodology can be applied to develop a molecular approach for clinical detection and diagnosis of other genomic disorders.  相似文献   

17.
Summary A child with congenital malformations and a de novo interstitial deletion of the long arm of chromosome 4 is described. Detailed analysis by G banding revealed the loss of the whole of band q21 and part of bands q13 and q22. The clinical abnormalities are quite dissimilar from those features described in other cases of partial 4q monosomy, which generally appear to result from the deletion of more distally placed segments of the chromosome.  相似文献   

18.
X Y Guan  P S Meltzer  J Cao  J M Trent 《Genomics》1992,14(3):680-684
Malignant melanoma is frequently characterized by the deletion of the long arm of chromosome 6 (usually encompassing 6q16-q21). In an effort to saturate this region with DNA markers, microdissection and molecular cloning of DNA from banded human metaphases recent development of a novel chromosome microdissection scheme that omits microchemical manipulation of DNA. Microdissection was targeted on band 6q21. Direct PCR amplification of dissected DNA was first used as a probe in chromosomal in situ hybridization of normal metaphases to confirm the specificity of material excised for cloning. A genomic library of 20,000 clones, which is highly enriched for sequences encompassing 6q21, was then constructed. Clones from this library have been mapped against a human-rodent somatic cell hybrid mapping panel that divides chromosome 6 into seven regions, confirming the localization of probes within the target region. Direct PCR amplification of DNA excised by microdissection greatly simplifies and facilitates this chromosome band-specific cloning strategy. The isolation of microclones from this region of chromosome 6 should assist in establishing a physical map of the melanoma deletion region.  相似文献   

19.
Summary The gene for superoxide dismutase-1 (SOD-1) is clearly on chromosome 21, although there is disagreement on the precise band location of SOD-1 on the long (q) arm of number 21. We report a patient with normal superoxide dismutase-1 (SOD-1) activity and an interstitial deletion of chromosome 21 resulting in monosomy for band q21. His phenotype is characterized by moderate mental retardation, a long narrow face, high and arched palate, cardiac murmur, undescended testes, and long hyperflexible extremities. The normal SOD-1 activity supports localization of this enzyme to 21q22.1.  相似文献   

20.
The 22q11 deletion syndrome (22q11DS) is a developmental syndrome comprising of heart, palate, thymus and parathyroid glands defects. Individuals with 22q11DS usually carry a 1.5- to 3-Mb heterozygous deletion on chromosome 22q11.2. However, there are many patients with features of 22q11DS without a known cause from conventional karyotype and FISH analysis. Six patients with features of 22q11DS, a normal chromosomal and FISH 22q11 analysis, were selected for investigation by microarray genomic comparative hybridisation (array CGH). Array-CGH is a powerful technology enabling detection of submicroscopic chromosome duplications and deletions by comparing a differentially labelled test sample to a control. The samples are co-hybridised to a microarray containing genomic clones and the resulting ratio of fluorescence intensities on each array element is proportional to the DNA copy number difference. No chromosomal changes were detected by hybridisation to a high resolution array representing chromosome 22q. However, one patient was found to have a 6-Mb deletion on 5q11.2 detected by a whole genome 1-Mb array. This deletion was confirmed with fluorescence in-situ hybridisation (FISH) and microsatellite marker analysis. It is the first deletion described in this region. The patient had tetralogy of Fallot, a bifid uvula and velopharyngeal insufficiency, short stature, learning and behavioural difficulties. This case shows the increased sensitivity of array CGH over detailed karyotype analysis for detection of chromosomal changes. It is anticipated that array CGH will improve the clinicians capacity to diagnose congenital syndromes with an unknown aetiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号