首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strategy for modelling transmembrane -helix bundles has been investigated. Results concerning the rotational orientations of the helices are described and perspectives for extensions of the method are discussed.  相似文献   

2.
Here we test the hypothesis that membrane-spanning β-sheets can exhibit structural plasticity in membranes due to their ability to shift hydrogen-bonding patterns. Transmembrane β-sheet forming peptides of the sequence AcWLn, where n = 5, 6, or 7, which range from 21 to 27 Å in maximum length, were incorporated into bilayers made of phosphatidylcholine lipids with saturated acyl chains containing 14, 16, or 18 carbons, which are 36–50 Å in thickness. The effect of the peptide β-sheets on fluid- and gel-phase bilayers were studied with differential scanning calorimetry and circular dichroism spectroscopy. We show that AcWL5 forms a stable, peptide-rich gel phase in all three lipids. The whole family of AcWLn peptides appears to form similarly stable, nonmembrane-disrupting β-sheets in all bilayer phases and thicknesses. Bilayers containing up to 20 mol % peptide, which is the maximum concentration tested, formed gel phases with melting temperatures that were equal to, or slightly higher than, the pure lipid transitions. Given the range of peptide lengths and bilayer thicknesses tested, these experiments show that the AcWLn family of membrane-inserted β-sheets exhibit remarkable structural plasticity in membranes.  相似文献   

3.
Bacteriorhodopsin (BR) is a membrane protein which pumps protons through the plasma membrane. Seven transmembrane BR helical segments are subjected to simulation studies in order to investigate the packing process of transmembrane helices. A Monte Carlo simulated annealing protocol is employed to optimize the helix bundle system. Helix packing is optimized according to a semi-empirical potential mainly composed of six components: a bilayer potential, a crossing angle potential, a helix dipole potential, a helix-helix distance potential, a helix orientation potential and a helix-helix distance restraint potential (a loop potential). Necessary parameters are derived from theoretical studies and statistical analysis of experimentally determined protein structures. The structures from the simulations are compared with the experimentally determined structures in terms of geometry. The structures generated show similar shapes to the experimentally suggested structure even without the helix-helix distance restraint potential. However, the relative locations of individual helices were reproduced only when the helix-helix distance restraint potential was used with restraint conditions. Our results suggest that transmembrane helix bundles resembling those observed experimentally may be generated by simulations using simple potentials. Received: 19 April 1999 / Revised version: 6 September 1999 / Accepted: 17 September 1999  相似文献   

4.
5.
The topology of a bitopic membrane protein consists of a single transmembrane helix connecting two extra-membranous domains. As opposed to helices from polytopic proteins, the transmembrane helices of bitopic proteins were initially considered as merely hydrophobic anchors, while more recent studies have begun to shed light on their role in the protein's function. Herein the overall importance of transmembrane helices from bitopic membrane proteins was analyzed using a relative conservation analysis. Interestingly, the transmembrane domains of bitopic proteins are on average, significantly more conserved than the remainder of the protein, even when taking into account their smaller amino acid repertoire. Analysis of highly conserved transmembrane domains did not reveal any unifying consensus, pointing to a great diversity in their conservation patterns. However, Fourier power spectrum analysis was able to show that regardless of the conservation motif, in most sequences a significant conservation moment was observed, in that one side of the helix was conserved while the other was not. Taken together, it may be possible to conclude that a significant proportion of transmembrane helices from bitopic membrane proteins participate in specific interactions, in a variety of modes in the plane of the lipid bilayer.  相似文献   

6.
The topology of a bitopic membrane protein consists of a single transmembrane helix connecting two extra-membranous domains. As opposed to helices from polytopic proteins, the transmembrane helices of bitopic proteins were initially considered as merely hydrophobic anchors, while more recent studies have begun to shed light on their role in the protein's function. Herein the overall importance of transmembrane helices from bitopic membrane proteins was analyzed using a relative conservation analysis. Interestingly, the transmembrane domains of bitopic proteins are on average, significantly more conserved than the remainder of the protein, even when taking into account their smaller amino acid repertoire. Analysis of highly conserved transmembrane domains did not reveal any unifying consensus, pointing to a great diversity in their conservation patterns. However, Fourier power spectrum analysis was able to show that regardless of the conservation motif, in most sequences a significant conservation moment was observed, in that one side of the helix was conserved while the other was not. Taken together, it may be possible to conclude that a significant proportion of transmembrane helices from bitopic membrane proteins participate in specific interactions, in a variety of modes in the plane of the lipid bilayer.  相似文献   

7.
The aim of this study is to investigate if the packing motifs of native transmembrane helices can be produced by simulations with simple potentials and to develop a method for the rapid generation of initial candidate models for integral membrane proteins composed of bundles of transmembrane helices. Constituent residues are mapped along the helix axis in order to maintain the amino acid sequence-dependent properties of the helix. Helix packing is optimized according to a semi-empirical potential mainly composed of four components: a bilayer potential, a crossing angle potential, a helix dipole potential and a helix-helix distance potential. A Monte Carlo simulated annealing protocol is employed to optimize the helix bundle system. Necessary parameters are derived from theoretical studies and statistical analysis of experimentally determined protein structures. Preliminary testing of the method has been conducted with idealized seven Ala20 helix bundles. The structures generated show a high degree of compactness. It was observed that both bacteriorhodopsin-like and δ-endotoxin-like structures are generated in seven-helix bundle simulations, within which the composition varies dependent upon the cooling rate. The simulation method has also been employed to explore the packing of N = 4 and N = 12 transmembrane helix bundles. The results suggest that seven and 12 transmembrane helix bundles resembling those observed experimentally (e.g., bacteriorhodopsin, rhodopsin and cytochrome c oxidase subunit I) may be generated by simulations using simple potentials. Received: 16 November 1998 / Revised version: 26 March 1999 / Accepted: 8 April 1999  相似文献   

8.
Plasma membrane lipids significantly affect assembly and activity of many signaling networks. The present work is aimed at analyzing, by molecular dynamics simulations, the structure and dynamics of the CD3 ζζ dimer in palmitoyl-oleoyl-phosphatidylcholine bilayer (POPC) and in POPC/cholesterol/sphingomyelin bilayer, which resembles the raft membrane microdomain supposed to be the site of the signal transducing machinery. Both POPC and raft-like environment produce significant alterations in structure and flexibility of the CD3 ζζ with respect to nuclear magnetic resonance (NMR) model: the dimer is more compact, its secondary structure is slightly less ordered, the arrangement of the Asp6 pair, which is important for binding to the Arg residue in the alpha chain of the T cell receptor (TCR), is stabilized by water molecules. Different interactions of charged residues with lipids at the lipid–cytoplasm boundary occur when the two environments are compared. Furthermore, in contrast to what is observed in POPC, in the raft-like environment correlated motions between transmembrane and cytoplasmic regions are observed. Altogether the data suggest that when the TCR complex resides in the raft domains, the CD3 ζζ dimer assumes a specific conformation probably necessary to the correct signal transduction.  相似文献   

9.
Resting membrane potential of both innervated and denervated rat diaphragm muscle fibers was investigated when the concentration of potential-producing ions was changed in the external fluid and following treatment with furosemide. It was found that equilibrium potential ( ) equalled resting potential level in innervated muscle for Cl, but shifts to more positive values compared with resting membrane potential following section of the nerve. Furosemide retards development of post-denervation depolarization of the muscle membrane. It is deduced that trophic influences originating from the motor nerve activates the furosemide-sensitive Cl influx system, leading to raised intracellular concentration of Cl, a shift in (ECl) and depolarization of the muscle membrane.S. V. Kurashov Medical Institute, Minsitry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 766–771, November–December, 1987.  相似文献   

10.
Polar carotenoid pigment zeaxanthin (β,β-carotene-3,3′-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 × 107 Ω cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21° with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of β-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.  相似文献   

11.
Amyloid-β peptide ending at the 42nd residue (Aβ42) is implicated in the pathogenesis of Alzheimer's disease (AD). Small compounds that exhibit selective lowering effects on Aβ42 production are termed γ-secretase modulators (GSMs) and are deemed as promising therapeutic agents against AD, although the molecular target as well as the mechanism of action remains controversial. Here, we show that a phenylpiperidine-type compound GSM-1 directly targets the transmembrane domain (TMD) 1 of presenilin 1 (PS1) by photoaffinity labelling experiments combined with limited digestion. Binding of GSM-1 affected the structure of the initial substrate binding and the catalytic sites of the γ-secretase, thereby decreasing production of Aβ42, possibly by enhancing its conversion to Aβ38. These data indicate an allosteric action of GSM-1 by directly binding to the TMD1 of PS1, pinpointing the target structure of the phenylpiperidine-type GSMs.  相似文献   

12.
Tomita N  Abe K  Kamio Y  Ohta M 《FEBS letters》2011,585(21):3452-3456
Staphylococcal γ-hemolysin (Hlg) is a pore-forming toxin consisting of two separate components, LukF (34kDa) and Hlg2 (32kDa). Here we show that Hlg pores aggregate and form clusters on human erythrocyte membranes in association with increasing hemolytic activity. Quantitative analysis using transmission electron microscopy and image processing revealed that the formation of single pores and clusters is related to the release of potassium ions and of hemoglobin from erythrocytes, respectively. This is the first study to suggest a novel and unique property which can facilitate hemolysis by the cluster formation of Hlg pores.  相似文献   

13.
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca(2+)-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein-protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit.  相似文献   

14.
15.
Talin binding to integrin β tails increases ligand binding affinity (activation). Changes in β transmembrane domain (TMD) topology that disrupt α-β TMD interactions are proposed to mediate integrin activation. In this paper, we used membrane-embedded integrin β3 TMDs bearing environmentally sensitive fluorophores at inner or outer membrane water interfaces to monitor talin-induced β3 TMD motion in model membranes. Talin binding to the β3 cytoplasmic domain increased amino acid side chain embedding at the inner and outer borders of the β3 TMD, indicating altered topology of the β3 TMD. Talin's capacity to effect this change depended on its ability to bind to both the integrin β tail and the membrane. Introduction of a flexible hinge at the midpoint of the β3 TMD decoupled the talin-induced change in intracellular TMD topology from the extracellular side and blocked talin-induced activation of integrin αIIbβ3. Thus, we show that talin binding to the integrin β TMD alters the topology of the TMD, resulting in integrin activation.  相似文献   

16.
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane β-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.  相似文献   

17.
The effects of glucagon, 3′,5′-AMP, 3′,5′-GMP and dexamethasone on ion fluxes and transmembrane-potential changes were compared in perfused livers from normal and adrenalectomized rats. Glucagon and cyclic nucleotide administration resulted in a similar redistribution of Na+ and K+ and membrane hyperpolarization in both groups. Dexamethasone at a dose which restores the gluconeogenic response after adrenalectomy, had no effect on either the ion movements or membrane potential and did not alter the responses to cyclic nucleotides or glucagon in either normal or adrenalectomized rat livers. These results suggest that the permissive effect of glucacorticoids on gluconeogenesis might be related to an event following ion movement.  相似文献   

18.
The α4β2 nicotinic acetylcholine receptor (nAChR) is the predominant heteromeric subtype of nAChRs in the brain, which has been implicated in numerous neurological conditions. The structural information specifically for the α4β2 and other neuronal nAChRs is presently limited. In this study, we determined structures of the transmembrane (TM) domains of the α4 and β2 subunits in lauryldimethylamine-oxide (LDAO) micelles using solution NMR spectroscopy. NMR experiments and size exclusion chromatography-multi-angle light scattering (SEC-MALS) analysis demonstrated that the TM domains of α4 and β2 interacted with each other and spontaneously formed pentameric assemblies in the LDAO micelles. The Na(+) flux assay revealed that α4β2 formed Na(+) permeable channels in lipid vesicles. Efflux of Na(+) through the α4β2 channels reduced intra-vesicle Sodium Green? fluorescence in a time-dependent manner that was not observed in vesicles without incorporating α4β2. The study provides structural insight into the TM domains of the α4β2 nAChR. It offers a valuable structural framework for rationalizing extensive biochemical data collected previously on the α4β2 nAChR and for designing new therapeutic modulators.  相似文献   

19.
While overall hydrophobicity is generally recognized as the main characteristic of transmembrane (TM) α-helices, the only membrane system for which there are detailed quantitative data on how different amino acids contribute to the overall efficiency of membrane insertion is the endoplasmic reticulum (ER) of eukaryotic cells. Here, we provide comparable data for TIM23-mediated membrane protein insertion into the inner mitochondrial membrane of yeast cells. We find that hydrophobicity and the location of polar and aromatic residues are strong determinants of membrane insertion. These results parallel what has been found previously for the ER. However, we see striking differences between the effects elicited by charged residues flanking the TM segments when comparing the mitochondrial inner membrane and the ER, pointing to an unanticipated difference between the two insertion systems.  相似文献   

20.
Extracellular Mg(2+) directly modulates voltage-dependent activation in ether-à-go-go (eag) potassium channels, slowing the kinetics of ionic and gating currents (Tang, C.-Y., F. Bezanilla, and D.M. Papazian. 2000. J. Gen. Physiol. 115:319-337). To exert its effect, Mg(2+) presumably binds to a site in or near the eag voltage sensor. We have tested the hypothesis that acidic residues unique to eag family members, located in transmembrane segments S2 and S3, contribute to the Mg(2+)-binding site. Two eag-specific acidic residues and three acidic residues found in the S2 and S3 segments of all voltage-dependent K(+) channels were individually mutated in Drosophila eag, mutant channels were expressed in Xenopus oocytes, and the effect of Mg(2+) on ionic current kinetics was measured using a two electrode voltage clamp. Neutralization of eag-specific residues D278 in S2 and D327 in S3 eliminated Mg(2+)-sensitivity and mimicked the slowing of activation kinetics caused by Mg(2+) binding to the wild-type channel. These results suggest that Mg(2+) modulates activation kinetics in wild-type eag by screening the negatively charged side chains of D278 and D327. Therefore, these residues are likely to coordinate the bound ion. In contrast, neutralization of the widely conserved residues D284 in S2 and D319 in S3 preserved the fast kinetics seen in wild-type eag in the absence of Mg(2+), indicating that D284 and D319 do not mediate the slowing of activation caused by Mg(2+) binding. Mutations at D284 affected the eag gating pathway, shifting the voltage dependence of Mg(2+)-sensitive, rate limiting transitions in the hyperpolarized direction. Another widely conserved residue, D274 in S2, is not required for Mg(2+) sensitivity but is in the vicinity of the binding site. We conclude that Mg(2+) binds in a water-filled pocket between S2 and S3 and thereby modulates voltage-dependent gating. The identification of this site constrains the packing of transmembrane segments in the voltage sensor of K(+) channels, and suggests a molecular mechanism by which extracellular cations modulate eag activation kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号