首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed “promiscuous gene expression” (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80+ mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.  相似文献   

4.
Chronic inflammatory demyelinating polyneuropathy is a debilitating autoimmune disease characterized by peripheral nerve demyelination and dysfunction. How the autoimmune response is initiated, identity of provoking Ags, and pathogenic effector mechanisms are not well defined. The autoimmune regulator (Aire) plays a critical role in central tolerance by promoting thymic expression of self-Ags and deletion of self-reactive T cells. In this study, we used mice with hypomorphic Aire function and two patients with Aire mutations to define how Aire deficiency results in spontaneous autoimmune peripheral neuropathy. Autoimmunity against peripheral nerves in both mice and humans targets myelin protein zero, an Ag for which expression is Aire-regulated in the thymus. Consistent with a defect in thymic tolerance, CD4(+) T cells are sufficient to transfer disease in mice and produce IFN-γ in infiltrated peripheral nerves. Our findings suggest that defective Aire-mediated central tolerance to myelin protein zero initiates an autoimmune Th1 effector response toward peripheral nerves.  相似文献   

5.
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.  相似文献   

6.
7.
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease.  相似文献   

8.
Lymphotoxin-β receptor (LTβR) axis plays a crucial role in development and compartmentalization of peripheral lymphatic organs. But, it is also required for the appropriate function and maintenance of structural integrity of the thymus: in LTβR-deficient animals the clonal deletion of autoreactive lymphocytes is impaired and differentiation of thymic medullary epithelial cells is disturbed. In this study, using several markers, we showed that thymic metallophilic macrophages were lacking in LTβR-deficient mice. In tumor necrosis factor receptor-I (p55)-deficient mice (which we used as positive control) thymic metallophilic cells were located, similarly as in normal mice, in the thymic cortico-medullary zone at the junction of cortex and medulla. These findings show that LTβR is necessary for maintenance of metallophilic macrophages in the thymus and provide further evidence that these cells may represent a factor involved in thymic negative selection.  相似文献   

9.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.  相似文献   

10.
11.
12.
The thymus mainly contains developing thymocytes that undergo thymic selection. In addition, some mature activated peripheral T cells can re-enter the thymus. We demonstrated in this study that adoptively transferred syngeneic Ag-specific T cells can enter the thymus of lymphopenic mice, where they delete thymic dendritic cells and medullary thymic epithelial cells in an Ag-specific fashion, without altering general thymic functions. This induced sustained thymic release of autoreactive self-Ag-specific T cells suggested that adoptively transferred activated T cells can specifically alter the endogenous T cell repertoire by erasing negative selection of their own specificities. Especially in clinical settings in which adoptively transferred T cells cause graft-versus-host disease or graft-versus-leukemia, as well as in adoptive tumor therapies, these findings might be of importance, because the endogenous T cell repertoire might be skewed to contribute to both manifestations.  相似文献   

13.
Medullary thymic epithelial cells (mTEC) play an important and unique role in central tolerance, expressing tissue-restricted Ags (TRA) which delete thymocytes autoreactive to peripheral organs. Since deficiencies in this cell type or activity can lead to devastating autoimmune diseases, it is important to understand the factors which regulate mTEC differentiation and function. Lymphotoxin (LT) ligands and the LTbetaR have been recently shown to be important regulators of mTEC biology; however, the precise role of this pathway in the thymus is not clear. In this study, we have investigated the impact of this signaling pathway in greater detail, focusing not only on mTEC but also on other thymic stromal cell subsets. LTbetaR expression was found in all TEC subsets, but the highest levels were detected in MTS-15(+) thymic fibroblasts. Rather than directing the expression of the autoimmune regulator Aire in mTEC, we found LTbetaR signals were important for TRA expression in a distinct population of mTEC characterized by low levels of MHC class II (mTEC(low)), as well as maintenance of MTS-15(+) fibroblasts. In addition, thymic stromal cell subsets from LT-deficient mice exhibit defects in chemokine production similar to that found in peripheral lymphoid organs of Lta(-/-) and Ltbr(-/-) mice. Thus, we propose a broader role for LTalpha1beta2-LTbetaR signaling in the maintenance of the thymic microenvironments, specifically by regulating TRA and chemokine expression in mTEC(low) for efficient induction of central tolerance.  相似文献   

14.
The mechanism underlying the autoimmune polyglandular syndrome type-1 (APS1) has been attributed to defective T-cell negative selection resulting from reduced expression and presentation of autoantigens in thymic medullary epithelial cells (MECs). It has also been postulated that Aire is involved in development of regulatory T cells, although supporting evidence is lacking. Here we show that expression of Aire in MECs is required for development of iNKT cells, suggesting a role for iNKT cells in APS1.  相似文献   

15.
Clonal selection of T cells occurs in the thymus and is responsible for generating a useful and functional repertoire of T cells. Aberrations in clonal selection result in altered T-cell homeostasis in the secondary lymphoid organs ranging from an absence of T cells to an overabundance of autoreactive T cells. The advent of new technologies facilitating the manipulation of the mouse genome has helped refine our understanding of the molecular and genetic pathways involved in clonal selection and has also revealed a high degree of complexity. Herein, we attempt to review recent advances in thymic selection processes, achieved mostly through genetic manipulations.  相似文献   

16.
17.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

18.
Thymic negative selection is the process in which maturing thymocytes that express T-cell receptors recognizing self are eliminated by apoptotic cell death. The molecular mechanism by which this occurs is poorly understood. Notably, genes involved in cell death, even thymocyte death, such as Fas, Fas-ligand, p53, caspase-1, caspase-3, and caspase-9, and Bcl-2 have been found to not be required for normal thymic negative selection. We have demonstrated previously that E2F1-deficient mice have a defect in thymocyte apoptosis. Here we show that E2F1 is required for normal thymic negative selection. Furthermore, we observed an E2F1-dependent increase of p53 protein levels during the process of thymic clonal deletion, which suggests that E2F1 regulates activation-induced apoptosis of self-reactive thymocytes by a p53-dependent mechanism. In contrast, other apoptotic pathways operating on developing thymocytes, such as glucocorticoid-induced cell death, are not mediated by E2F1. The T lymphocytes that escape thymic negative selection migrate to the peripheral immune system but do not appear to be autoreactive, indicating that there may exist E2F1-independent mechanisms of peripheral tolerance, which protect mice from developing an autoimmune response. We expect that E2F1-deficient mice will provide a useful tool for understanding the molecular mechanism of and the immunological importance of thymic negative selection.  相似文献   

19.
Sonic hedgehog signalling in T-cell development and activation   总被引:1,自引:0,他引:1  
The production of mature functional T cells in the thymus requires signals from the thymic epithelium. Here, we review recent experiments showing that one way in which the epithelium controls the production of mature T cells is by the secretion of sonic hedgehog (SHH). We consider the increasing evidence that SHH-induced signalling is not only important for the differentiation and proliferation of early thymocyte progenitors, but also for modulating T-cell receptor signalling during repertoire selection, with implications for positive selection, CD4 versus CD8 lineage commitment, and clonal deletion of autoreactive cells. We also review the influence of hedgehog signalling in peripheral T-cell activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号