首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DNA double-strand breaks (DSBs) are considered the most important type of DNA damage inflicted by ionizing radiation. The molecular mechanisms of DSB repair by nonhomologous end joining (NHEJ) have not been well studied in live mammalian cells, due in part to the lack of suitable chromosomal repair assays. We previously introduced a novel plasmid-based assay to monitor NHEJ of site-directed chromosomal I-SceI breaks. In the current study, we expanded the analysis of chromosomal NHEJ products in murine fibroblasts to focus on the error-prone rejoining of DSBs with noncomplementary ends, which may serve as a model for radiation damage repair. We found that noncomplementary ends were efficiently repaired using microhomologies of 1-2 nucleotides (nt) present in the single-stranded overhangs, thereby keeping repair-associated end degradation to a minimum (2-3 nt). Microhomology-mediated end joining was disrupted by Wortmannin, a known inhibitor of DNA-PKcs. However, Wortmannin did not significantly impair the proficiency of end joining. In contrast to noncomplementary ends, the rejoining of cohesive ends showed only a minor dependence on microhomologies but produced fivefold larger deletions than the repair of noncomplementary ends. Together, these data suggest the presence of several distinct NHEJ mechanisms in live cells, which are characterized by the degree of sequence deletion and microhomology use. Our NHEJ assay should prove a useful system to further elucidate the genetic determinants and molecular mechanisms of site-directed DSBs in living cells.  相似文献   

3.
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3′-hydroxyl and 5′-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.  相似文献   

4.
5.
Cancer cells are often associated with secondary chromosomal rearrangements, such as deletions, inversions, and translocations, which could be the consequence of unrepaired/misrepaired DNA double strand breaks (DSBs). Nonhomologous DNA end joining is one of the most common pathways to repair DSBs in higher eukaryotes. By using oligomeric DNA substrates mimicking various endogenous DSBs in a cell-free system, we studied end joining (EJ) in different cancer cell lines. We found that the efficiency of EJ varies among cancer cells; however, there was no remarkable difference in the mechanism and expression of EJ proteins. Interestingly, cancer cells with lower levels of EJ possessed elevated expression of BCL2 and vice versa. Removal of BCL2 by immunoprecipitation or protein fractionation led to elevated EJ. More importantly, we show that overexpression of BCL2 or the addition of purified BCL2 led to the down-regulation of EJ. Further, we found that BCL2 interacts with KU proteins both in vitro and in vivo. Hence, our results suggest that EJ in cancer cells could be negatively regulated by the anti-apoptotic protein, BCL2, and this may contribute toward increased chromosomal abnormalities in cancer.  相似文献   

6.
DNA double strand breaks (DSB) are the most serious form of DNA damage. Repair of DSBs is important to prevent chromosomal fragmentation, translocations and deletions. Non-homologous end joining (NHEJ) is one of three major pathways for the repair of DSBs in human cells. In this process two DNA ends are joined directly, usually with no sequence homology, although in the case of same polarity of the single stranded overhangs in DSBs, regions of microhomology are utilized. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes in V(D)J recombination. The main components of the NHEJ system in eukaryotes are the catalytic subunit of DNA protein kinase (DNA-PKcs), Ku proteins, XRCC4, DNA ligase IV, and Artemis. This review focuses on the mechanisms an dregulation of DSB repair by NHEJ in mammalian cells.  相似文献   

7.
Ogiwara H  Kohno T 《PloS one》2011,6(12):e28756
Non-homologous end joining (NHEJ) is a major pathway for the repair of DNA double strand break (DSBs) with incompatible DNA ends, which are often generated by ionizing irradiation. In vitro reconstitution studies have indicated that NHEJ of incompatible DNA ends requires not only the core steps of synapsis and ligation, employing KU80/DNA-PKcs and LIG4, but also additional DNA end processing steps, such as DNA end resection by Artemis and gap-filling by POLλ and POLμ. It seems that DNA end processing steps are important for joining of incompatible DNA ends rather than compatible ends. Despite the fact that DNA end processing is important for incompatible DNA end joining in vitro, the role of DNA processing in NHEJ of incompatible DSBs in vivo has not yet been demonstrated. Here we investigated the in vivo roles of proteins implicated in each step of NHEJ using an assay in which NHEJ of incompatible DNA ends on chromosomal DNA can be assessed in living human cells. siRNA- or inhibitor-mediated impairment of factors in each NHEJ step resulted in a reduction in joining efficiency. Strikingly, stronger effects were observed when DNA end resection and ligation protein functions were impaired. Disruption of synapsis by KU80 and DNA-PKcs impairment, or the disruption of gap filling by POLλ and POLμ depletion, resulted in higher levels of microhomology-mediated joining. The present study indicates that DNA end resection and ligation factors are critical for the efficient joining of incompatible ends in vivo, further emphasizing the importance of synapsis and gap-filling factors in preventing illegitimate joining.  相似文献   

8.
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2.  相似文献   

9.
Telomeres distinguish chromosome ends from double-strand breaks (DSBs) and prevent chromosome fusion. However, telomeres can also interfere with DNA repair, as shown by a deficiency in nonhomologous end joining (NHEJ) and an increase in large deletions at telomeric DSBs. The sensitivity of telomeric regions to DSBs is important in the cellular response to ionizing radiation and oncogene-induced replication stress, either by preventing cell division in normal cells, or by promoting chromosome instability in cancer cells. We have previously proposed that the telomeric protein TRF2 causes the sensitivity of telomeric regions to DSBs, either through its inhibition of ATM, or by promoting the processing of DSBs as though they are telomeres, which is independent of ATM. Our current study addresses the mechanism responsible for the deficiency in repair of DSBs near telomeres by combining assays for large deletions, NHEJ, small deletions, and gross chromosome rearrangements (GCRs) to compare the types of events resulting from DSBs at interstitial and telomeric DSBs. Our results confirm the sensitivity of telomeric regions to DSBs by demonstrating that the frequency of GCRs is greatly increased at DSBs near telomeres and that the role of ATM in DSB repair is very different at interstitial and telomeric DSBs. Unlike at interstitial DSBs, a deficiency in ATM decreases NHEJ and small deletions at telomeric DSBs, while it increases large deletions. These results strongly suggest that ATM is functional near telomeres and is involved in end protection at telomeric DSBs, but is not required for the extensive resection at telomeric DSBs. The results support our model in which the deficiency in DSB repair near telomeres is a result of ATM-independent processing of DSBs as though they are telomeres, leading to extensive resection, telomere loss, and GCRs involving alternative NHEJ.  相似文献   

10.
DNA double strand breaks (DSBs) trigger a variety of cellular signaling processes, collectively termed the DNA-damage response (DDR), that are primarily regulated by protein kinase ataxia-telangiectasia mutated (ATM). Among DDR activated processes, the repair of DSBs by non-homologous end joining (NHEJ) is essential. The proper coordination of NHEJ factors is mainly achieved through phosphorylation by an ATM-related kinase, the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), although the molecular basis for this regulation has yet to be fully elucidated. In this study we identify the major NHEJ DNA polymerase, DNA polymerase lambda (Polλ), as a target for both ATM and DNA-PKcs in human cells. We show that Polλ is efficiently phosphorylated by DNA-PKcs in vitro and predominantly by ATM after DSB induction with ionizing radiation (IR) in vivo. We identify threonine 204 (T204) as a main target for ATM/DNA-PKcs phosphorylation on human Polλ, and establish that its phosphorylation may facilitate the repair of a subset of IR-induced DSBs and the efficient Polλ-mediated gap-filling during NHEJ. Molecular evidence suggests that Polλ phosphorylation might favor Polλ interaction with the DNA-PK complex at DSBs. Altogether, our work provides the first demonstration of how Polλ is regulated by phosphorylation to connect with the NHEJ core machinery during DSB repair in human cells.  相似文献   

11.
Merkle D  Block WD  Yu Y  Lees-Miller SP  Cramb DT 《Biochemistry》2006,45(13):4164-4172
Nonhomologous end joining (NHEJ) is the primary mechanism by which mammalian cells repair DNA double-strand breaks (DSBs). Proteins known to play a role in NHEJ include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the Ku 70/Ku 80 heterodimer (Ku), XRCC4, and DNA ligase IV. One of the main roles of the DNA-PKcs-Ku complex is to bring the ends of the DSB together in a process termed synapsis, prior to end joining. Synapsis results in the autophosphorylation of DNA-PKcs, which is required to make the DNA ends available for ligation. Here, we describe a novel assay using two-photon fluorescence cross-correlation spectroscopy that allows for the analysis of DNA synapsis and end joining in solution using purified proteins. We demonstrate that although autophosphorylation-defective DNA-PKcs does not support DNA ligase-mediated DNA end joining, like wild-type (WT) DNA-PKcs, it is capable of Ku-dependent DNA synapsis in solution. Moreover, we show that, in the presence of Ku, both WT DNA-PKcs and autophosphorylation-defective DNA-PKcs promote the formation of multiple, large multi-DNA complexes in solution, suggesting that, rather than align two opposing DNA ends, multiple DNA-PK molecules may serve to bring multiple DNA ends into the NHEJ complex.  相似文献   

12.
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.  相似文献   

13.
Tseng SF  Gabriel A  Teng SC 《PLoS genetics》2008,4(4):e1000060
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends, Pol2 is important for the recession of 3' flaps that can form during imprecise pairing. Indeed, a mutation in the 3'-5' exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3' flaps. Thus, Pol2 performs a key 3' end-processing step in NHEJ.  相似文献   

14.
Biochemical evidence for Ku-independent backup pathways of NHEJ   总被引:10,自引:2,他引:8  
Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3′ or 5′ protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3′ overhangs. We propose that the affinity of Ku for DNA ends, particularly when cooperating with DNA-PKcs, suppresses B-NHEJ by quickly and efficiently binding DNA ends and directing them to D-NHEJ for rapid joining. A chromatin-based model of DNA DSB rejoining accommodating biochemical and genetic results is presented and deviations between in vitro and in vivo results discussed.  相似文献   

15.
Ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunits (DNA-PKcs) are members of the phosphatidylinositol 3-like family of serine/threonine kinases that phosphorylate serines or threonines when positioned adjacent to a glutamine residue (SQ/TQ). Both kinases are activated rapidly by DNA double-strand breaks (DSBs) and regulate the function of proteins involved in DNA damage responses. In developing lymphocytes, DSBs are generated during V(D)J recombination, which is required to assemble the second exon of all Ag receptor genes. This reaction is initiated through a DNA cleavage step by the RAG1 and RAG2 proteins, which together comprise an endonuclease that generates DSBs at the border of two recombining gene segments and their flanking recombination signals. This DNA cleavage step is followed by a joining step, during which pairs of DNA coding and signal ends are ligated to form a coding joint and a signal joint, respectively. ATM and DNA-PKcs are integrally involved in the repair of both signal and coding ends, but the targets of these kinases involved in the repair process have not been fully elucidated. In this regard, the RAG1 and RAG2 proteins, which each have several SQ/TQ motifs, have been implicated in the repair of RAG-mediated DSBs. In this study, we use a previously developed approach for studying chromosomal V(D)J recombination that has been modified to allow for the analysis of RAG1 and RAG2 function. We show that phosphorylation of RAG1 or RAG2 by ATM or DNA-PKcs at SQ/TQ consensus sites is dispensable for the joining step of V(D)J recombination.  相似文献   

16.
The Sleeping Beauty (SB) element is a useful tool to probe transposon-host interactions in vertebrates. We investigated requirements of DNA repair factors for SB transposition in mammalian cells. Factors of nonhomologous end joining (NHEJ), including Ku, DNA-PKcs, and Xrcc4 as well as Xrcc3/Rad51C, a complex that functions during homologous recombination, are required for efficient transposition. NHEJ plays a dominant role in repair of transposon excision sites in somatic cells. Artemis is dispensable for transposition, consistent with the lack of a hairpin structure at excision sites. Ku physically interacts with the SB transposase. DNA-PKcs is a limiting factor for transposition and, in addition to repair, has a function in transposition that is independent from its kinase activity. ATM is involved in excision site repair and affects transposition rates. The overlapping but distinct roles of repair factors in transposition and in V(D)J recombination might influence the outcomes of these mechanistically similar processes.  相似文献   

17.
Repair of double-stranded DNA breaks (DSBs) in mammalian cells primarily occurs by the non-homologous end-joining (NHEJ) pathway, which requires seven core proteins (Ku70/Ku86, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis, XRCC4-like factor (XLF), XRCC4 and DNA ligase IV). Here we show using combined affinity purification and mass spectrometry that DNA-PKcs co-purifies with all known core NHEJ factors. Furthermore, we have identified a novel evolutionary conserved protein associated with DNA-PKcs—c9orf142. Computer-based modelling of c9orf142 predicted a structure very similar to XRCC4, hence we have named c9orf142—XLS (XRCC4-like small protein). Depletion of c9orf142/XLS in cells impaired DSB repair consistent with a defect in NHEJ. Furthermore, c9orf142/XLS interacted with other core NHEJ factors. These results demonstrate the existence of a new component of the NHEJ DNA repair pathway in mammalian cells.Double-stranded DNA breaks (DSBs) are among the most cytotoxic DNA lesions for mammalian cells.1 Effective repair of DSBs is essential for cellular survival and for suppression of potential deleterious chromosomal rearrangements.2 Two main DNA repair pathways eliminate DSBs—homologous recombination (HR) or non-homologous end joining (NHEJ). HR utilises an undamaged copy of the chromosome as a template to direct repair, thus this restricts HR to the S and G2/M phases of the cell cycle, when such an extra chromosome copy is available.3 NHEJ performs the bulk of DSB repair in mammalian cells and in particular in during the G1 phase of the cell cycle, where the cells are completely dependent on NHEJ. NHEJ can be further subdivided into so-called classical NHEJ (c-NHEJ) and alternative NHEJ (alt-NHEJ).4 These DNA repair pathways utilise distinct protein components and also show different efficiencies of end ligation. In general, c-NHEJ is much more effective in end ligation than alt-NHEJ and can ligate most unrelated DNA ends directly or with minimal processing. In contrast alt-NHEJ requires short microhomologies between the DNA ends for ligation.5 C-NHEJ requires the following seven core proteins: Ku70/Ku86 dimers, DNA-PKcs (DNA-dependent protein kinase catalytic subunit), Artemis nuclease, XRCC4-like factor (XLF) and the XRCC4/ligase IV complex.6, 7 The DSB repair during c-NHEJ is initiated by the Ku dimer that senses the presence of free double-stranded DNA ends in cells and rapidly binds such ends with high affinity. DNA-bound Ku then recruits DNA-PKcs (DNA-PKcs/Ku70/Ku86 complex is termed DNA-PK holoenzyme), which has a protein kinase activity and is required for activation of the nuclease Artemis.8 Artemis, in turn, is responsible for DNA end processing in order to achieve DNA end structures suitable for ligation. The final step of c-NHEJ is the ligation of processed DNA ends by XRCC4/ligase IV complex. This final step is stimulated by XLF protein that interacts with XRCC4 forming long filamentous structures at DSBs to facilitate DNA end joining.9, 10 XRCC4 and XLF factors are distinct among NHEJ factors in that they share similar tertiary structure but show low primary sequence conservation.11 Since the identification of XLF in 2006, no new core factors have been discovered.11, 12 Importantly, c-NHEJ is essential for proper development, as mutations in this pathway lead to immunodeficiency and defective neurogenesis in humans.7 It is therefore essential to fully decipher the identity of components for the c-NHEJ pathway and their regulation.In this study, proteomic analysis of DNA-PKcs-containing protein complexes identified an abundant previously uncharacterised protein c9orf142, which we have named c9orf142—XLS (XRCC4-like small protein). Structural modelling predicts XLS to be highly similar to XRCC4 and XLF, and depletion of XLS delays ionising radiation (IR)-induced DNA DSB repair. Moreover, XLS is associated with other core c-NHEJ factors. Our data strongly suggest that c9orf142/XLS represents a novel c-NHEJ component in mammalian cells.  相似文献   

18.
Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations (CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells, is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs proficient cells leading to an excess of CAs within ITSs.  相似文献   

19.
Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing radiation-induced 5'-OH and 3'-phosphate DNA termini, functions in NHEJ via an FHA-dependent interaction with CK2-phosphorylated Xrcc4. Analysis of the PNK FHA-Xrcc4 interaction revealed that the PNK FHA domain binds phosphopeptides with a unique selectivity among FHA domains. Disruption of the Xrcc4-PNK interaction in vivo is associated with increased radiosensitivity and slower repair kinetics of DSBs, in conjunction with a diminished efficiency of DNA end joining in vitro. Therefore, these results suggest a new role for Xrcc4 in the coordination of DNA end processing with DNA ligation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号