首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incretin glucagon-like peptide-1 (GLP-1)-(7---36) amide is an important factor in prandial glucose homeostasis. Findings that GLP-1 is rapidly inactivated led to the hypothesis that the target of GLP-1 is close to the site of release. To investigate whether the target tissue is located in the hepatoportal system, we administered GLP-1 with glucose into the portal vein of rats and compared this with peripheral GLP-1 administration (jugular vein) and studied the effects of blockers of the nervous system. Portal GLP-1 augmented the insulin response to a portal glucose bolus by 81% (P < 0.01) and markedly improved the glucose disposal rate (P < 0.05). Peripheral administration of GLP-1 produced a similar augmentation of the insulin response (88%) and of the glucose disposal rate. However, only the effect of portal GLP-1 on insulin secretion was blocked by the ganglionic blocker chlorisondamine. The data suggest that prandial beta-cell stimulation by GLP-1 is evoked via a neural reflex triggered in the hepatoportal system. Because absorbed nutrients and GLP-1 first appear in the portal system, this mechanism may constitute a major pathway of GLP-1 action during meals.  相似文献   

2.
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.  相似文献   

3.
Glucagon-like peptide-1 (GLP-1) plays a significant role in glucose homeostasis through its incretin effect on insulin secretion. However, GLP-1 also exhibits extrapancreatic actions, and in particular its possible influences on insulin sensitivity are controversial. To study the dynamic action of GLP-1 on insulin sensitivity, we applied advanced statistical modeling methods to study glucose disappearance in mice that underwent intravenous glucose tolerance test with administration of GLP-1 at various dose levels. In particular, the minimal model of glucose disappearance was exploited within a population estimation framework for accurate detection of relationships between glucose disappearance parameters and GLP-1. Minimal model parameters were estimated from glucose and insulin data collected in 209 anesthetized normal mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). Insulin secretion markedly increased, as expected, with increasing GLP-1 dose. However, minimal model-derived indexes, i.e., insulin sensitivity and glucose effectiveness, did not significantly change with GLP-1 dose. Instead, fractional turnover rate of insulin action [P2 = 0.0207 +/- 24.3% (min) at zero GLP-1 dose] increased steadily with administered GLP-1 dose, with significant differences at 10.4 nmol/kg (P2 = 0.040 +/- 15.5%, P = 0.0046) and 31.2 nmol/kg (P2 = 0.050 +/- 29.2%, P = 0.01). These results show that GLP-1 influences the dynamics of insulin action by accelerating insulin action following glucose challenge. This is a novel mechanism contributing to the glucose-lowering action of GLP-1.  相似文献   

4.
Glucagon-like peptide-1 (GLP-1) is an incretin, which induces glucose-dependent insulin secretion. GLP-1 is rapidly degraded by dipeptidyl peptidase IV (DPPIV) after its release. We investigated whether DPPIV-deficient F344/DuCrj rats show improved glucose tolerance when compared with DPPIV-positive F344/Jcl rats. Oral glucose tolerance test indicated improved glucose tolerance in F344/DuCrj rats, but blood glucose levels of the two strains were almost the same 120 min after the glucose bolus. Valine-pyrrolidide, a DPPIV inhibitor, had no effect on the glucose tolerance of F344/DuCrj rats, but improved that of F344/Jcl rats. Enhanced insulin secretion and high plasma active GLP-1 levels were detected in an intraduodenal glucose tolerance test. Glucose tolerance is improved in DPPIV-deficient F344/DuCrj rats via enhanced insulin release mediated by high active GLP-1 levels. Our results suggest that DPPIV inhibition is a rational strategy to treat diabetic patients by improving glucose tolerance with low risk of hypoglycemia.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) receptor knockout (Glp1r(-/-)) mice exhibit impaired hepatic insulin action. High fat (HF)-fed Glp1r(-/-) mice exhibit improved, rather than the expected impaired, hepatic insulin action. This is due to decreased lipogenic gene expression and triglyceride accumulation. The present studies overcome these secondary adaptations by acutely modulating GLP-1R action in HF-fed wild-type mice. The central GLP-1R was targeted given its role as a regulator of hepatic insulin action. We hypothesized that acute inhibition of the central GLP-1R impairs hepatic insulin action beyond the effects of HF feeding. We further hypothesized that activation of the central GLP-1R improves hepatic insulin action in HF-fed mice. Insulin action was assessed in conscious, unrestrained mice using the hyperinsulinemic euglycemic clamp. Mice received intracerebroventricular (icv) infusions of artificial cerebrospinal fluid, GLP-1, or the GLP-1R antagonist exendin-9 (Ex-9) during the clamp. Intracerebroventricular Ex-9 impaired the suppression of hepatic glucose production by insulin, whereas icv GLP-1 improved it. Neither treatment affected tissue glucose uptake. Intracerebroventricular GLP-1 enhanced activation of hepatic Akt and suppressed hypothalamic AMP-activated protein kinase. Central GLP-1R activation resulted in lower hepatic triglyceride levels but did not affect muscle, white adipose tissue, or plasma triglyceride levels during hyperinsulinemia. In response to oral but not intravenous glucose challenges, activation of the central GLP-1R improved glucose tolerance. This was associated with higher insulin levels. Inhibition of the central GLP-1R had no effect on oral or intravenous glucose tolerance. These results show that inhibition of the central GLP-1R deteriorates hepatic insulin action in HF-fed mice but does not affect whole body glucose homeostasis. Contrasting this, activation of the central GLP-1R improves glucose homeostasis in HF-fed mice by increasing insulin levels and enhancing hepatic insulin action.  相似文献   

6.
The expression of glucagon-like peptide-1 (GLP-1) receptor and the effects of GLP-1-(7-36) amide (t-GLP-1) on glucose metabolism and insulin release by pancreatic islets during rat development were studied. GLP-1 receptor mRNA was found in significant amounts in pancreatic islets from all age groups studied, GLP-1 receptor expression being maximal when pancreatic islets were incubated at physiological glucose concentration (5.5 mM), but decreasing significantly when incubated with either 1.67 or 16.7 mM glucose. Glucose utilization and oxidation by pancreatic islets from fetal and adult rats rose as a function of glucose concentration, always being higher in fetal than in adult islets. The addition of t-GLP-1 to the incubation medium did not modify glucose metabolism but gastric inhibitory polypeptide and glucagon significantly increased glucose utilization by fetal and adult pancreatic islets at 16.7 mM glucose. At this concentration, glucose produced a significant increase in insulin release by the pancreatic islets from 10-day-old and 20-day-old suckling rats and adult rats, whereas those from fetuses showed only a significant increase when glucose was raised from 1.67 to 5.5 mM. t-GLP-1 elicited an increase in insulin release by pancreatic islets from all the experimental groups when the higher glucose concentrations were used. Our findings indicate that GLP-1 receptors and the effect of t-GLP-1 on insulin release are already present in the fetus, and they therefore exclude the possibility that alterations in the action of t-GLP-1 are responsible for the unresponsiveness of pancreatic beta cells to glucose in the fetus, but stimulation of t-GLP-1 release by food ingestion in newborns may partially confer glucose competence on beta cells.  相似文献   

7.
8.
The incretin and food intake suppressive effects of intraperitoneally administered glucagon-like peptide-1 (GLP-1) involve activation of GLP-1 receptors (GLP-1R) expressed on vagal afferent fiber terminals. Central nervous system processing of GLP-1R-driven vagal afferents results in satiation signaling and enhanced insulin secretion from pancreatic-projecting vagal efferents. As the vast majority of endogenous GLP-1 is released from intestinal l-cells following ingestion, it stands to reason that paracrine GLP-1 signaling, activating adjacent GLP-1R expressed on vagal afferent fibers of gastrointestinal origin, contributes to glycemic and food intake control. However, systemic GLP-1R-mediated control of glycemia is currently attributed to endocrine action involving GLP-1R expressed in the hepatoportal bed on terminals of the common hepatic branch of the vagus (CHB). Here, we examine the hypothesis that activation of GLP-1R expressed on the CHB is not required for GLP-1's glycemic and intake suppressive effects, but rather paracrine signaling on non-CHB vagal afferents is required to mediate GLP-1's effects. Selective CHB ablation (CHBX), complete subdiaphragmatic vagal deafferentation (SDA), and surgical control rats received an oral glucose tolerance test (2.0 g glucose/kg) 10 min after an intraperitoneal injection of the GLP-1R antagonist, exendin-(9-39) (Ex-9; 0.5 mg/kg) or vehicle. CHBX and control rats showed comparable increases in blood glucose following blockade of GLP-1R by Ex-9, whereas SDA rats failed to show a GLP-1R-mediated incretin response. Furthermore, GLP-1(7-36) (0.5 mg/kg ip) produced a comparable suppression of 1-h 25% glucose intake in both CHBX and control rats, whereas intake suppression in SDA rats was blunted. These findings support the hypothesis that systemic GLP-1R mediation of glycemic control and food intake suppression involves paracrine-like signaling on GLP-1R expressed on vagal afferent fibers of gastrointestinal origin but does not require the CHB.  相似文献   

9.
Glucagon-like peptide 1 has important actions in lowering blood glucose, both through its incretin action and by regulating other systems affecting glucose metabolism. There is good evidence that the coordinate regulation of islet hormones by GLP-1 has significant effects on hepatic glucose metabolism, and this likely contributes to the potent effect of GLP-1 on fasting hyperglycemia in diabetic patients. More controversial are potential effects of GLP-1 on hepatic glucose production or storage independent of insulin and glucagon. There are data from in vitro studies supporting an effect of GLP-1 to promote glycogen synthesis in hepatocytes, and several in vivo studies suggesting that GLP-1 has independent effects on hepatic glucose uptake and/or production. However, these findings must be considered against a backdrop of studies that have not demonstrated islet-independent actions of GLP-1. This paper will review the current literature addressing hepatic effects of GLP-1 and identify important gaps in the knowledge base for this topic.  相似文献   

10.
It has been hypothesized that the potent insulinotropic action of the gut incretin hormone glucagon-like peptide-1 (GLP-1) is exerted not only through a direct action on the beta cells but may be partially dependent on sensory nerves. We therefore examined the influence of GLP-1 in mice rendered sensory denervated by neonatal administration of capsaicin performed at days 2 and 5 (50 mg/kg). Control mice were given vehicle. Results show that at 10-16 wk of age in control mice, intravenous GLP-1 at 0.1 or 10 nmol/kg augmented the insulin response to intravenous glucose (1 g/kg) in association with improved glucose elimination. In contrast, in capsaicin-pretreated mice, GLP-1 at 0.1 nmol/kg could not augment the insulin response to intravenous glucose and no effect on glucose elimination was observed. Nevertheless, at the high dose of 10 nmol/kg, GLP-1 augmented the insulin response to glucose in capsaicin-pretreated mice as efficiently as in control mice. The insulin response to GLP-1 from isolated islets was not affected by neonatal capsaicin, and, furthermore, the in vivo insulin response to glucose was augmented whereas that to arginine was not affected by capsaicin. It is concluded that GLP-1-induced insulin secretion at a low dose in mice is dependent on intact sensory nerves and therefore indirectly mediated and that this distinguishes GLP-1 from other examined insulin secretagogues.  相似文献   

11.
BACKGROUND: Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that plays an important role in glucose homeostasis. Its functions include glucose-stimulated insulin secretion, suppression of glucagon secretion, deceleration of gastric emptying, and reduction in appetite and food intake. Despite the numerous antidiabetic properties of GLP-1, its therapeutic potential is limited by its short biological half-life due to rapid enzymatic degradation by dipeptidyl peptidase IV. The present study aimed to demonstrate the therapeutic effects of constitutively expressed GLP-1 in an overt type 2 diabetic animal model using an adenoviral vector system. METHODS: A novel plasmid (pAAV-ILGLP-1) and recombinant adenoviral vector (Ad-ILGLP-1) were constructed with the cytomegalovirus promoter and insulin leader sequence followed by GLP-1(7-37) cDNA. RESULTS: The results of an enzyme-linked immunosorbent assay showed significantly elevated levels of GLP-1(7-37) secreted by human embryonic kidney cells transfected with the construct containing the leader sequence. A single intravenous administration of Ad-ILGLP-1 into 12-week-old Zucker diabetic fatty (ZDF) rats, which have overt type 2 diabetes mellitus (T2DM), achieved near normoglycemia for 3 weeks and improved utilization of blood glucose in glucose tolerance tests. Circulating plasma levels of GLP-1 increased in GLP-1-treated ZDF rats, but diminished 21 days after treatment. When compared with controls, Ad-ILGLP-1-treated ZDF rats had a lower homeostasis model assessment for insulin resistance score indicating amelioration in insulin resistance. Immunohistochemical staining showed that cells expressing GLP-1 were found in the livers of GLP-1-treated ZDF rats. CONCLUSIONS: These data suggest that GLP-1 gene therapy can improve glucose homeostasis in fully developed diabetic animal models and may be a promising treatment modality for T2DM in humans.  相似文献   

12.
Liraglutide, an analog of glucagon-like peptide-1 (GLP-1), is an effective anti-diabetic agent with few side effects. Since native GLP-1 exerts vascular effects, we investigated changes in pancreatic islet blood flow using a non-radioactive microsphere technique, as well as insulin concentration and glucose tolerance after 17 day treatment with liraglutide in 6-week-old Goto-Kakizaki (GK) rats. Compared to saline-treated control GK rats, liraglutide limited body weight gain, decreased glycemia, improved glucose tolerance and lowered serum insulin concentration. Neither pancreatic or islet blood flow, nor pancreatic insulin content, was affected by liraglutide treatment. We conclude that early intervention with liraglutide decreases glycemia and improves glucose tolerance, thus halting the natural progression towards diabetes, without affecting islet microcirculation or pancreatic insulin content in young female GK rats.  相似文献   

13.
The insulinotropic intestinal hormone GLP-1 is thought to exert one of its effects by direct action on the pancreatic beta-cell receptors. GLP-1 is rapidly degraded in plasma, such that only a small amount of the active form reaches the pancreas, making it questionable whether this amount is sufficient to produce a direct incretin effect. The aim of our study was to assess, in a dog model, the putative incretin action of GLP-1 acting directly on the beta-cell in the context of postprandial rises in GLP-1 and glucose. Conscious dogs were fed a high-fat, high-carbohydrate meal, and insulin response was measured. We also infused systemic glucose plus GLP-1, or glucose alone, to simulate the meal test values of these variables and measured insulin response. The results were as follows: during the meal, we measured a robust insulin response (52 +/- 9 to 136 +/- 14 pmol/l, P < 0.05 vs. basal) with increases in portal glucose and GLP-1 but only limited increases in systemic glucose (5.3 +/- 0.1 to 5.7 +/- 0.1 mmol/l, P = 0.1 vs. basal) and GLP-1 (6 +/- 0 to 9 +/- 1 pmol/l, P = 0.5 vs. basal). Exogenous infusion of systemic glucose and GLP-1 produced a moderate increase in insulin (43 +/- 5 to 84 +/- 15 pmol/l, 43% of the meal insulin). However, infusion of glucose alone, without GLP-1, produced a similar insulin response (37 +/- 6 to 82 +/- 14 pmol, 53% of the meal insulin, P = 0.7 vs. glucose and GLP-1 infusion). In conclusion, in dogs with postprandial rises in systemic glucose and GLP-1, the hormone might not have a direct insulinotropic effect and could regulate glycemia via indirect, portohepatic-initiated neural mechanisms.  相似文献   

14.
Dupre J 《Regulatory peptides》2005,128(2):149-157
The remission phase of Type 1 diabetes mellitus is associated with substantial recovery of beta-cell function and with marked improvement of endogenous insulin responses to meals in the early months after diagnosis, accompanied by little or no improvement in the insulin response to parenteral glucose, suggesting that the incretin function may be important in glycaemic regulation in this phase of diabetes. Preservation of the insulin response to parenteral glucagon-like peptide-1 (GLP-1), contrasting with lack of stimulation of insulin secretion by the other known incretin gastric inhibitory polypeptide (GIP), prompted studies with exogenous GLP-1 in recent-onset Type 1 diabetes. These studies showed substantial reduction of glycaemic excursions after ingestion of mixed nutrients during intravenous infusion of GLP-1 without administration of insulin, in subjects with a range of endogenous secretion of insulin in response to meals as demonstrated by blood levels of the insulin-connecting peptide (CP). These effects were independent of stimulation of blood levels of CP and were reproduced in volunteers with no endogenous release of CP in response to meals. The glycaemic effects were associated with inhibition of abnormal rises of blood levels of glucagon, and with suppression of endogenous release of human pancreatic polypeptide (HPP), by GLP-1. It was hypothesized that a major component of the glycaemic effect is attributable to the known action of GLP-1 to inhibit gastric emptying and to inhibit glucagon secretion. Studies of the effects of GLP-1 agonists (GLP-1 and exendin-4) given together with established insulin doses before a meal supported the hypothesis. The more prolonged actions of exendin-4 were accompanied by greater and more prolonged reduction of glycaemic effects of ingestion of meals in volunteers with CP-negative Type 1 diabetes mellitus, during intensive insulin therapy, in whom delay of gastric emptying was confirmed by studies of blood levels of acetaminophen ingested with the meals. Side effect-free doses of exendin-4 given together with insulin in volunteers with CP-negative Type 1 diabetes receiving continuing intensive insulin therapy demonstrated the capacity of this combination therapy to normalize blood glucose levels after ingestion of meals that were consistent with the dietary program of the volunteers, without apparent increased risk of hypoglycaemia within a normal between-meals interval. It is suggested that further and more prolonged studies of the use of long-acting GLP-1 agonists as congeners with insulin in Type 1 diabetes mellitus are indicated.  相似文献   

15.
Glucagon-like peptide-1 (GLP-1) controls glucose metabolism in extrapancreatic tissues participating in glucose homeostasis, through receptors not associated to cAMP. In rat hepatocytes, activation of PI3K/PKB, PKC and PP-1 mediates the GLP-1-induced stimulation of glycogen synthase. We have investigated the effect of GLP-1 in normal human myocytes, and that of its structurally related peptides exendin-4 (Ex-4) and its truncated form 9-39 (Ex-9) upon glucose uptake, and the participation of cellular enzymes proposed to mediate insulin actions. GLP-1 and both exendins activated, like insulin, PI3K/PKB and p42/44 MAPK enzymes, but p70s6k was activated only by GLP-1 and insulin. GLP-1, Ex-4 and Ex-9, like insulin, stimulated glucose uptake; wortmannin blocked the action of GLP-1, insulin and Ex-9, and reduced that of Ex-4; PD98059 abolished the effect of all peptides/hormones, while rapamycin blocked that of insulin and partially prevented that of GLP-1. H-7 abolished the action of GLP-1, insulin and Ex-4, while Ro 31-8220 prevented only the Ex-4 and Ex-9 effect. In conclusion, GLP-1, like insulin, stimulates glucose uptake, and this involves activation of PI3K/PKB, p44/42 MAPKs, partially p70s6k, and possibly PKC; Ex-4 and Ex-9 both have GLP-1-like effect upon glucose transport, in which both share with GLP-1 an activation of PI3K/PKB--partially in the case of Ex-4--and p44/42 MAPKs but not p70s6k.  相似文献   

16.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

17.
IGFBP-1 is involved in glucohomeostasis, but the direct action of IGFBP-1 on the beta-cell remains unclear. Incubation of dispersed mouse beta-cells with IGFBP-1 for 30min inhibited insulin secretion stimulated by glucose, glucagon-like peptide 1 (GLP-1) or tolbutamide without changes in basal release of insulin and in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and NAD(P)H evoked by glucose. In contrast, IGFBP-1 augmented glucose-stimulated insulin secretion in intact islets, associated with a reduced somatostatin secretion. These results suggest a suppressive action of IGFBP-1 on insulin secretion in isolated beta-cells through a mechanism distal to energy generating steps and not involving regulation of [Ca(2+)](i). In contrast, IGFBP-1 amplifies glucose-stimulated insulin secretion in intact islets, possibly by suppressing somatostatin secretion. These direct modulatory influences of IGFBP-1 on insulin secretion may imply an important regulatory role of IGFBP-1 in vivo and in the pathogenesis of type 2 diabetes, in which loss of insulin release is an early pathogenetic event.  相似文献   

18.
Hou J  Yan R  Ding D  Yang L  Wang C  Wu Z  Yu X  Li W  Li M 《Biotechnology letters》2007,29(10):1439-1446
Glucagon-like peptide-1 (7-36) amide (GLP-1), a gut hormone released into the blood stream after feeding, can stimulate insulin secretion by potentiating the insulinotropic action of glucose. An expression vector pET-22bG8, encoding a fusion protein containing eight tandem repeat GLP-1 ([Ser(8), Gln(26), Asp(34)]-GLP-1) analogues, was constructed and transformed into the Escherichia coli BL21(DE3) strain over-expressing the His-tagged fusion protein under the IPTG promoter. SDS-PAGE and Western blot analysis demonstrated that the His-tagged GLP-1 fusion protein migrated as a single protein with a molecular weight of 32 kDa. Following chronic (10 days) oral administration (20 mg kg(-1) day(-1)) of the fusion protein to diabetic rats, serum glucose levels were significantly lowered from 26 +/- 2.5 to 7.9 +/- 1.4 mmol/l. Further studies are needed to evaluate the potential use for GLP-1 analogue short peptide in the treatment of diabetes mellitus.  相似文献   

19.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

20.
The insulinotropic action of GLP-1 is modulated by the nutritional environment of islet B-cells. This study explores whether an ester of succinic acid could be used to potentiate the insulin secretory response to GLP-1 in vivo. Fed anaesthetized male rats received a primed constant infusion (0.5 micromol followed by 0.25 micromol x min(-1) both per g body wt) of succinic acid dimethyl ester (SAD) in saline for 15 min and, at the 5th min of such an infusion, an intravenous injection of GLP-1 (5 pmol/g body wt). The ester provoked a rapid, sustained and reversible increase in plasma insulin concentration. In the SAD-infused rats, the increment in plasma insulin concentration caused by GLP-1 was more pronounced and more sustained than in saline-infused rats. It is proposed, therefore, that suitable succinic acid esters could be used to potentiate the insulinotropic action of GLP-1 in Type II (non-insulin-dependent) diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号