首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male bluegill displays one of two life history tactics. Some males (termed "parentals") delay reproduction until ca. 7 years of age, at which time they build nests and actively courts females. Others mature precociously (sneakers) and obtain fertilizations by cuckolding parental males. In the current study, we studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel over the first 60 s of motility. Although sneaker sperm initially had higher ATP levels than parental sperm, by approximately 30 s postactivation, no differences existed between tactics. No differences were noted between tactics in swimming speed, percent motility, or the activities of key metabolic enzymes, although sperm from parentals had a higher ratio of creatine phosphokinase (CPK) to citrate synthase (CS). In both tactics, with increasing CPK and CS activity, sperm ATP levels increased at 20 s postactivation, suggesting that capacities for phosphocreatine hydrolysis and aerobic metabolism may influence interindividual variation in rates of ATP depletion. Nonetheless, there was no relation between sperm ATP levels and either swimming speed or percent of sperm that were motile. This suggests that interindividual variation in ATP levels may not be the primary determinant of variation in sperm swimming performance in bluegill.  相似文献   

2.
The mammalian sperm must be highly motile for a long time to fertilize a egg. It has been supposed that ATP required for sperm flagellar movement depends predominantly on mitochondrial respiration. We assessed the contribution of mitochondrial respiration to mouse sperm motility. Mouse sperm maintained vigorous motility with high beat frequency in an appropriate solution including a substrate such as glucose. The active sperm contained a large amount of ATP. When carbonyl cyanide m-chlorophenylhydrazone (CCCP) was applied to suppress the oxidative phosphorylation in mitochondria, the vigorous motility was maintained and the amount of ATP was kept at the equivalent level to that without CCCP. When pyruvate or lactate was provided instead of glucose, both sperm motility and the amount of ATP were high. However, they were drastically decreased when oxidative phosphorylation was suppressed by addition of CCCP. We also found that sperm motility could not be maintained in the presence of respiratory substrates when glycolysis was suppressed. 2-Deoxy-d-glucose (DOG) had no effect on mitochondrial respiration assessed by a fluorescent probe, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1), but, it inhibited motility and decreased ATP content when pyruvate or lactate were provided as substrates. The present results suggest that glycolysis has an unexpectedly important role in providing the ATP required for sperm motility throughout the length of the sperm flagellum.  相似文献   

3.
For freshwater fish the motile period of sperm is extremely brief, even after a dilution in isotonic media. This result is in contrast to most other animals (ranging from invertebrates to mammals), in which sperm are generally motile for at least several hours. We have analyzed the reasons for the brevity of this movement by studying the relationships between the metabolism of trout sperm and the activation of their motility upon dilution. Sperm motility was not initiated when the dilution medium contained an elevated concentration of potassium (20-40 mM), but dilution in an isotonic solution of sodium chloride triggered an immediate activation of motility, and sperm swam vigorously. Motility of sperm decreased rapidly and 15 s after dilution sperm were moving slowly in small circles. Sperm became abruptly immotile at 20-30 s and flagella straightened. When millimolar concentrations of Ca2+ were also present in the dilution medium, movement did not stop abruptly, flagella kept beating and stopped only after 1-2 min. When sperm remained immotile they retained a high concentration of ATP. The activation of motility induced a rapid decrease of ATP. In the absence of calcium, and after the cessation of motility, ATP increased slowly back to its original concentration. In the presence of millimolar concentrations of calcium the concentration of ATP decreased to a very low level and remained low thereafter. The progressive decrease of the flagellar beat frequency, that had been observed during the period of trout sperm movement, might be related to the rapid exhaustion of intraflagellar ATP. Motility could be reinduced in sperm that had recovered high concentrations of ATP, demonstrating the functional integrity of the motile apparatus even after flagellar arrest. In conclusion we suggest that the maximum duration of trout sperm motility, at most 2 min (as a consequence of a depletion of ATP during the movement), is due to a low mitochondrial oxidative phosphorylation capacity.  相似文献   

4.
Respiration of steelhead trout sperm: sensitivity to pH and carbon dioxide   总被引:1,自引:0,他引:1  
Steelhead trout Oncorhynchus mykiss sperm held in seminal plasma or sperm-immobilizing buffer (pH 8·6) at 10° C consumed O2 at the rate of c . 2 nmol O2 min−1 10−9 sperm; the rate of O2 consumption was not different in sperm held for 4 or 24 h. Decreasing the extracellular pH from 8·5 to 7·5 either by diluting semen with buffer titrated with HCl or by increasing the partial pressure of CO2 in the incubation atmosphere resulted in c . a 40% decrease in the rate of sperm respiration. The data did not, however, support the hypothesis that the precipitous reduction in the capacity for sperm motility that occurs as external pH is reduced is a result of a decrease in cellular metabolism. The rate of O2 consumption of freshly collected semen from different males was not correlated to cellular ATP content or to the proportion of sperm that were motile upon activation; the initial ATP content and sperm motility were positively correlated. The rate of O2 consumption was not significantly increased following sperm activation or by the addition of an uncoupler of oxidative phosphorylation, carbonyl cyanide p -trifluoromethoxyphenylhydrazone, suggesting that these sperm have little, if any, capacity for increased oxidative metabolism.  相似文献   

5.
Whether the main energy source for sperm motility is from oxidative phosphorylation or glycolysis has been long-debated in the field of reproductive biology. Using the rhesus monkey as a model, we examined the role of glycolysis and oxidative phosphorylation in sperm function by using alpha-chlorohydrin (ACH), a glycolysis inhibitor, and pentachlorophenol (PCP), an oxidative phosphorylation uncoupler. Sperm treated with ACH showed no change in percentage of motile sperm, although sperm motion was impaired. The ACH-treated sperm did not display either hyperactivity- or hyperactivation-associated changes in protein tyrosine phosphorylation. When treated with PCP, sperm motion parameters were affected by the highest level of PCP (200 microM); however, PCP did not cause motility impairments even after chemical activation. Sperm treated with PCP were able to display hyperactivity and tyrosine phosphorylation after chemical activation. In contrast with motility measurements, treatment with either the glycolytic inhibitor or the oxidative phosphorylation inhibitor did not affect sperm-zona binding and zona-induced acrosome reaction. The results suggest glycolysis is essential to support sperm motility, hyperactivity, and protein tyrosine phosphorylation, while energy from oxidative phosphorylation is not necessary for hyperactivated sperm motility, tyrosine phosphorylation, sperm-zona binding, and acrosome reaction in the rhesus macaque.  相似文献   

6.
When the plasma membrane of hamster and boar spermatozoa was extraced by treatment with Triton X-100 and the demembranated spermatozoa were transferred to a reactivating medium containing only ATP, axonemes were initially immotile, and then gradually became motile. Under these experimental conditions, the cAMP content in the reactivating medium increased soon. This suggests that cAMP is synthesized from ATP by adenylate cyclase involved in incompletely removed or solubilized residual sperm membrane and that the autosynthesized cAMP causes the delay in motility initiation. This delayed initiation of motility did not occur when phosphodiesterase was added to the reactivating medium and the phosphodiesterase-dependent quiescent sperm became motile instantaneously at any time when excess cAMP was supplemented. Furthermore, demembranated sperm which were diluted in the reactivating medium containing ATP and cAMP, immediately became motile. cAMP levels in the cell increased during the initiation of sperm motility in both species. These results suggest that cAMP is the real factor indispensable for the initiation of sperm motility at ejaculation in mammals.  相似文献   

7.
Sperm metabolism of a tropical fish species, the African catfish, Clarias gariepinus, was studied by measurements of sperm enzyme activity and metabolite levels. We also analysed the effect of metabolites, co-enzymes and enzymatic blockers on sperm motility behaviour and viability. Similar to other teleostean species, African catfish spermatozoa have the capacity for glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, lipid catabolism, beta-oxidation and osmoregulation. In immotile spermatozoa, lipid catabolism, beta-oxidation, the tricarboxylic acid cycle and oxidative phosphorylation were important primary energy-delivering pathways; sperm oxygen consumption was 0.39-0.85 microg O(2)/min/ ml of testicular semen. During motility, glycolysis, lipid catabolism and beta-oxidation of fatty acids occurred simultaneously, which is atypical for teleosts, and the spermatozoal respiration rate increased drastically by 15-25-fold. Also in contrast to other teleostean sperm cells, ATP levels remained stable during motility and immotile storage. The sperm cell status was unstable in the African catfish. Although the spermatozoa have osmoregulation ability, and even though balanced physiological saline solutions were used for sperm motility activation and sperm incubation, the motility and viability of spermatozoa quickly decreased at 28 degrees C, the spawning temperature of the African catfish. Cyclic AMP and inhibition of phosphodiesterase activity could not prolong sperm motility and viability. In contrast, at 6-10 degrees C motility was prolonged from approximately 30 s to >5 min, probably due to decreased metabolic rates.  相似文献   

8.
Previous work led to the conclusion that, during oxidative phosphorylation, mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from rat brain was dependent on intramitochondrially compartmented ATP as substrate. The present study demonstrated that, when oxidative phosphorylation was functioning concurrently, mitochondrial creatine kinase could also generate intramitochondrial ATP serving as substrate for hexokinase. In the absence of concurrent oxidative phosphorylation, the kinetics of glucose phosphorylation with ATP generated by creatine kinase were not consistent with the supply of ATP from a saturable intramitochondrial compartment as formed during oxidative phosphorylation. Evidence for intramitochondrially compartmented ATP, generated by creatine kinase, was obtained; this was distinct from compartmented ATP generated by oxidative phosphorylation in terms of kinetics of generation of the compartment and its capacity, sensitivity to release by carboxyatractyloside, and sensitivity to disruption by digitonin. That oxidative phosphorylation did induce a dependence on intramitochondrial ATP as a substrate was further indicated by the observation that, although the initial rate of glucose phosphorylation by mitochondrial hexokinase depended on the extramitochondrial concentration of ATP present at the time oxidative phosphorylation was initiated, a final steady state rate of glucose phosphorylation was attained that was independent of extramitochondrial ATP levels. These and previous results emphasize the probable importance of nucleotide compartmentation in regulation of cerebral glycolytic and oxidative metabolism.  相似文献   

9.
Despite the prevalence of zebrafish as a model scientific organism, understanding sperm function in this species is essentially limited to observations that osmotic shock initiates motility. During natural spawning, sperm encounter a range of environmental salinities as well as freshwater mixed with egg-associated ovarian fluid (OF), thus sperm are likely to be exposed to saline prior to egg contact. Effects of saline on sperm function in this model species are unknown, but likely to be important. Using computer assisted sperm analysis, this study addressed the effects of osmolality of spawning media and ionic composition and pH on the proportion of sperm becoming motile at activation (motility), as well as sperm velocity and path. When activated with tap water, motility was maximal (80%) at 10 s (earliest time measured), declining to 5% by 87 s postactivation. With activation at moderate osmolalities (∼160-200 mmol/kg) initial motility was decreased relative to low osmolality, increased from 10 to 30 s, and subsequently declined less rapidly (motility in 80 mM NaCl was 35%, 80%, and 60% at 10, 30 and 147 s, respectively). Thus, moderate osmolality increased duration, but introduced a temporal lag in motility onset. With moderate osmolalities, the rate of velocity decay was less than that with tap water activation. Sodium chloride and sucrose similarly impacted both motility and velocity. Replacement of NaCl with KCl, pH values ranging from 6.8 to 8.4, or the presence of gadolinium were without effect. Motility, but not velocity, was slightly supressed by Ca2+. Therefore, whereas pH and concentrations of Ca2+ or K+ of OF are unlikely to impact fertility via sperm motility, the OF contribution to spawning media osmolality may have pronounced effects on motility and velocity of sperm, factors previously correlated with fertility in other species.  相似文献   

10.
It has recently been reported that the exposure of human spermatozoa to an extremely low frequency (ELF) electromagnetic field (EMF) with a square waveform of 5 mT amplitude and frequency of 50 Hz improves sperm motility. The functional relationship between the energy metabolism and the enhancement of human sperm motility induced by ELF‐EMF was investigated. Sperm exposure to ELF‐EMF resulted in a progressive and significant increase of mitochondrial membrane potential and levels of ATP, ADP and NAD+ that was associated with a progressive and significant increase in the sperm kinematic parameters. No significant effects were detected on other parameters such as ATP/ADP ratio and energy charge. When carbamoyl cyanide m‐chlorophenylhydrazone (CICCP) was applied to inhibit the oxidative phosphorylation in the mitochondria, the values of energy parameters and motility in the sperm incubated in the presence of glucose and exposed to ELF‐EMF did not change, thus indicating that the glycolysis was not involved in mediating ELF‐EMF stimulatory effect on motility. By contrast, when pyruvate and lactate were provided instead of glucose, the energy status and motility increased significantly in ELF‐EMF‐treated sperm. Under these culture conditions, the inhibition of glycolitic metabolism by 2‐deoxy‐D ‐glucose (DOG) again resulted in increased values of energy and kinematic parameters, indicating that gluconeogenesis was not involved in producing glucose for use in glycolysis. We concluded that the key role in mediating the stimulatory effects exerted by ELF‐EMF on human sperm motility is played by mitochondrial oxidative phosphorylation rather than glycolysis. Bioelectromagnetics 32:15–27, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).  相似文献   

12.
The significance of a phosphocreatine (PCr) shuttle in the energy transport of motile spermatozoa (Tombes, R. M., and B. M. Shapiro, 1985, Cell, 41:325-334) has been tested by a quantitative analysis of motility. Computer-assisted analysis of stroboscopic photomicrographs of live sea urchin spermatozoa whose creatine kinase has been specifically inhibited by fluorodinitrobenzene reveals that motility is impaired due to a progressive damping of bending waves as they propagate along the flagellum. This lesion, which has been defined as attenuation and can be quantified, is repaired when these spermatozoa are demembranated and reactivated to swim with ATP. The implication that attenuation is due to the inhibition of energy transport via a PCr shuttle resulting in the decrease of ATP and accumulation of inhibitory levels of ADP distally has been supported by calculating sperm PCr and ATP levels resulting from diffusion along the flagellum. The specific alterations of motility seen with creatine kinase inhibition and their reversal with ATP are as expected from the model and provide strong support for the PCr shuttle in high energy phosphate transport.  相似文献   

13.
Creatine kinase is involved in the integration of high-energy metabolism in various tissues. In this study the tissue-specific distribution of the mitochondrial isoform was investigated, both by electrophoresis of rat tissue extracts, and by ultrastructural localisation of creatine kinase activity. Furthermore, the influence of uncoupling of oxidative phosphorylation on mitochondrial creatine kinase activity associated with intermembrane contacts was investigated by enzyme cytochemistry and morphometric analysis. The results of the cytochemical survey indicate that contact sites are a prerequisite for creatine kinase to demonstrate enzymatic activity. Moreover, the extent of creatine kinase active membrane contacts depends on the metabolic state of the mitochondrion, as shown for heart mitochondria in vivo and in vitro, before and after treatment with dinitrophenol.  相似文献   

14.
Repetitive activation of perch (Perca fluviatilis L.) sperm motility was investigated in this study. The first phase of sperm motility activation was initiated by dilution in a 260 mM glucose solution (75% motility). The second phase of motility was achieved by adding water to previously activated sperm, so that the glucose concentration dropped to 220 mM (24% motility). Finally, the third phase was obtained by further addition of water (down to 90 mM glucose) to the activated sperm suspension (15% motility). Parallel measurements of sperm ATP content were also made. The median value for nonactivated sperm was 43.9 nmol ATP/109 spermatozoa. The ATP concentration decreased significantly from 35 to 7 nmol ATP/109 spermatozoa after successive activations of motility in the above glucose solutions. Sperm velocity ranged in value from 25 to 330 μm/sec at 10 sec postactivation, from 10 to 290 μm/sec at 30 sec, and from 0 to 200 μm/sec at 45 sec. A model postulating several classes in the population of spermatozoa is developed, tentatively accounting for such successive activation. Possible further application of multiple sperm activation is discussed.  相似文献   

15.
Previous studies have shown that glycolysis can oscillate periodically, driven by feedback loops in regulation of key glycolytic enzymes by free ADP and other metabolites. Here we show both theoretically and experimentally in cardiac myocytes that when the capacity of oxidative phosphorylation and the creatine kinase system to buffer the cellular ATP/ADP ratio is suppressed, glycolysis can cause large scale periodic oscillations in cellular ATP levels (0.02-0.067 Hz), monitored from glibenclamide-sensitive changes in action potential duration or intracellular free Mg2+. Action potential duration oscillations originate primarily from glycolysis, since they 1) occur in the presence of cyanide or rotenone, 2) are suppressed by iodoacetate, 3) are accompanied by at most very small mitochondrial membrane potential oscillations, and 4) exhibit an anti-phase relationship to NADH fluorescence. By uncoupling energy supply-demand balance, glycolytic oscillations may promote injury and electrophysiological heterogeneity during acute metabolic stresses, such as acute myocardial ischemia in which both oxidative phosphorylation and creatine kinase activity are inhibited.  相似文献   

16.
Control is exerted on the movement of mammalian spermatozoa at ejaculation and at capacitation. Here the activation of motility in motionless pre-ejaculated sperm was investigated. This was done by isolating quiescent caudal epididymal sperm from the hamster and observing that the addition of either calcium cAMP, cGMP, or cUMP conferred full motility upon them. Other salts, nucleotides, caffeine, sugars, or oxygen did not. Epididymal fluid which contains phosphodiesterase had too little calcium to activate the sperm while seminal plasma had more than enough. The cAMP content of quiescent sperm was low, but ATP levels were high. At the activation of motility, sperm cAMP synthesis became very rapid. It thus appears that sperm are quiescent on the male because they lack cAMP, and that calcium, supplied at ejaculation, initiates rapid cAMP synthesis to produce motility.  相似文献   

17.
The combination of laser tweezers, fluorescent imaging, and real-time automated tracking and trapping (RATTS) can measure sperm swimming speed and swimming force simultaneously with mitochondrial membrane potential (MMP). This approach is used to study the roles of two sources of ATP in sperm motility: oxidative phosphorylation, which occurs in the mitochondria located in the sperm midpiece and glycolysis, which occurs along the length of the sperm tail (flagellum). The relationships between (a) swimming speed and MMP and (b) swimming force and MMP are studied in dog and human sperm. The effects of glucose, oxidative phosphorylation inhibitors and glycolytic inhibitors on human sperm motility are examined. The results indicate that oxidative phosphorylation does contribute some ATP for human sperm motility, but not enough to sustain high motility. The glycolytic pathway is shown to be a primary source of energy for human sperm motility.  相似文献   

18.
In the present study, we investigated the possibility of spontaneous carp spermatozoa activation by freeze-thawing. To evaluate this, the parameters of spermatozoa motility percentage, velocity, ATP content level and fertility rate of sperm were used. The motility and velocity of spermatozoa activated by freeze-thawing were characterized by motile spermatozoa with a median value of 16% and a velocity of 98 μm/s. In addition, the motility and velocity of sperm from the thawed samples were significantly lower than in the control (median value of 100% for sperm motility and 175 μm/s for sperm velocity). Furthermore, a spontaneously activated spermatozoa motility terminated within five minutes post-thaw time. After freeze-thawing the ATP level significantly decreased with post-thaw time (46 nmol ATP/109 and 10 nmol ATP/109 at 25 s and 10 min after thawing, respectively). Fertility of spermatozoa was not significantly affected within 10 min post-thaw. On the other hand, the fertility of frozen-thawed sperm was significantly lower if compared to fresh sperm. We conclude that the freeze-thawing procedure spontaneously activated spermatozoa motility in common carp. However, this activation did not negatively affect the fertility of frozen-thawed sperm.  相似文献   

19.
Sperm activating and -attracting factor (SAAF), derived from the egg of the ascidian Ciona, activates sperm motility through adenosine 3':5'-cyclic monophosphate (cAMP)-synthesis. A demembranated preparation of intact immotile sperm without SAAF was shown to require cAMP for reactivation. However, a demembranated preparation of intact motile sperm treated with SAAF did not require cAMP for reactivation, suggesting that cAMP is a prerequisite factor for SAAF-dependent activation of sperm motility. Furthermore, a cAMP-dependent protein kinase (PKA) inhibitor, H-89, was found to inhibit sperm motility. During in vivo or in vitro activation of sperm motility by SAAF or cAMP, a 26 kDa axonemal protein and 21 kDa dynein light chain were phosphorylated, respectively, suggesting the involvement of PKA-dependent phosphorylation of these proteins in sperm activation. The calmodulin antagonist, W-7, and an inhibitor of calmodulin-dependent myosin light chain kinase, ML-7, also inhibited the activation of sperm motility. Inhibition was reversed by the addition of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Demembranated preparations of immotile sperm in the presence of W-7 or ML-7 were reactivated by cAMP, suggesting that calmodulin participated in sperm activation and that cAMP synthesis was followed by activation of a calmodulin-dependent mechanism.  相似文献   

20.
Computer-assisted motility analysis (CASA) was used to evaluate the effect of cryopreservation and theophylline treatment on sperm motility of lake sturgeon (Acipenser fulvescens ). Motility was recorded at 0 and 5 min postactivation. The effect of cryopreservation on sperm acrosin-like activity was also measured. Cryopreservation led to a decline in the percentage of motile spermatozoa, while other parameters of sperm motion, curvilinear and straight line velocities, linearity and amplitude of lateral head displacement were unchanged. Reductions in straight line velocity observed with fresh and cryopreserved spermatozoa and in linearity with cryopreserved spermatozoa 5 min postactivation were not seen in the presence of 5 mM theophylline at this time point. Frozen-thawed spermatozoa retained acrosin-like activity, and it correlated with the percentage of post-thaw motility (r = 0.95 and r = 0.90, P < 0.05, for 0 and 5 min post-activation time, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号