首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bertaux C  Dragic T 《Journal of virology》2006,80(10):4940-4948
The CD81 tetraspanin was first identified as a hepatitis C virus (HCV) receptor by its ability to bind the soluble ectodomain of envelope glycoprotein E2 (sE2). More recently, it has been suggested that CD81 is necessary but not sufficient for HCV entry into target cells. Here we present further evidence that putative human hepatocyte-specific factors act in concert with CD81 to mediate sE2 binding and HCV pseudoparticle (HCVpp) entry. Moreover, we show that CD81-mediated HCVpp entry entails E2 binding to residues in the large extracellular loop as well as molecular events mediated by the transmembrane and intracellular domains of CD81. The concept that CD81 receptor function progresses in stages is further supported by our finding that anti-CD81 monoclonal antibodies inhibit HCVpp entry by different mechanisms. The half-life of CD81-HCVpp binding was determined to be approximately 17 min, and we propose that binding is followed by CD81 oligomerization, partitioning into cholesterol-rich membrane domains, or other, lateral protein-protein interactions. This results in the formation of a receptor-virus complex that undergoes endocytosis and pH-dependent membrane fusion.  相似文献   

2.
Tong Y  Zhu Y  Xia X  Liu Y  Feng Y  Hua X  Chen Z  Ding H  Gao L  Wang Y  Feitelson MA  Zhao P  Qi ZT 《Journal of virology》2011,85(6):2793-2802
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.  相似文献   

3.
Several cell surface molecules have been proposed as receptor candidates, mediating cell entry of hepatitis C virus (HCV) on the basis of their physical association with virions or with soluble HCV E2 glycoproteins. However, due to the lack of infectious HCV particles, evidence that these receptor candidates support infection was missing. Using our recently described infectious HCV pseudotype particles (HCVpp) that display functional E1E2 glycoprotein complexes, here we show that HCV is a pH-dependent virus, implying that its receptor component(s) mediate virion internalization by endocytosis. Expression of the CD81 tetraspanin in non-permissive CD81-negative hepato-carcinoma cells was sufficient to restore susceptibility to HCVpp infection, confirming its critical role as a cell attachment factor. As a cell surface molecule likely to mediate endosomal trafficking, we demonstrate that the human scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein-internalization molecule that we previously proposed as a novel HCV receptor candidate due to its affinity with E2 glycoproteins, is required for infection of CD81-expressing hepatic cells. By receptor competition assays, we found that SR-B1 antibodies that blocked binding of soluble E2 could prevent HCVpp infectivity. Furthermore, we establish that the hyper-variable region 1 of the HCV E2 glycoprotein is a critical determinant mediating entry in SR-B1-positive cells. Finally, by correlating expression of HCV receptors and infectivity, we suggest that, besides CD81 and SR-B1, additional hepatocyte-specific co-factor(s) are necessary for HCV entry.  相似文献   

4.
Structure-function analysis of hepatitis C virus envelope-CD81 binding   总被引:24,自引:0,他引:24       下载免费PDF全文
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease. We have recently found that the large extracellular loop (LEL) of human CD81 binds HCV. This finding prompted us to assess the structure-function features of HCV-CD81 interaction by using recombinant E2 protein and a recombinant soluble form of CD81 LEL. We have found that HCV-E2 binds CD81 LEL with a K(d) of 1.8 nM; CD81 can mediate attachment of E2 on hepatocytes; engagement of CD81 mediates internalization of only 30% of CD81 molecules even after 12 h; and the four cysteines of CD81 LEL form two disulfide bridges, the integrity of which is necessary for CD81-HCV interaction. Altogether our data suggest that neutralizing antibodies aimed at interfering with HCV binding to human cells should have an affinity higher than 10(-9) M, that HCV binding to hepatocytes may not entirely depend on CD81, that CD81 is an attachment receptor with poor capacity to mediate virus entry, and that reducing environments do not favor CD81-HCV interaction. These studies provide a better understanding of the CD81-HCV interaction and should thus help to elucidate the viral life cycle and to develop new strategies aimed at interfering with HCV binding to human cells.  相似文献   

5.
Superinfection exclusion is the ability of an established virus infection to interfere with infection by a second virus. In this study, we found that Huh-7.5 cells acutely infected with hepatitis C virus (HCV) genotype 2a (chimeric strain J6/JFH) and cells harboring HCV genotype 1a, 1b, or 2a full-length or subgenomic replicons were resistant to infection with cell culture-produced HCV (HCVcc). Replicon-containing cells became permissive for HCVcc infection after treatment with an HCV-specific protease inhibitor. With the exception of cells harboring a J6/JFH-FLneo replicon, infected or replicon-containing cells were permissive for HCV pseudoparticle (HCVpp) entry, demonstrating a postentry superinfection block downstream of primary translation. The surprising resistance of J6/JFH-FLneo replicon-containing cells to HCVpp infection suggested a defect in virus entry. This block was due to reduced expression of the HCV coreceptor CD81. Further analyses indicated that J6/JFH may be toxic for cells expressing high levels of CD81, thus selecting for a CD81(low) population. CD81 down regulation was not observed in acutely infected cells, suggesting that this may not be a general mechanism of HCV superinfection exclusion. Thus, HCV establishes superinfection exclusion at a postentry step, and this effect is reversible by treatment of infected cells with antiviral compounds.  相似文献   

6.
So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.  相似文献   

7.
Hepatitis C virus (HCV) glycoprotein E2 binds to human cells by interacting with the CD81 molecule, which has been proposed to be the viral receptor. A correlation between binding to CD81 and species permissiveness to HCV infection has also been reported. We have determined the sequence of CD81 from the tamarin, a primate species known to be refractory to HCV infection. Tamarin CD81 (t-CD81) differs from the human molecule at 5 amino acid positions (155, 163, 169, 180, and 196) within the large extracellular loop (LEL), where the binding site for E2 has been located. Soluble recombinant forms of human CD81 (h-CD81), t-CD81, and African green monkey CD81 (agm-CD81) LEL molecules were analyzed by enzyme-linked immunosorbent assay for binding to E2 glycoprotein. Both h-CD81 and t-CD81 molecules were able to bind E2. Competition experiments showed that the two receptors cross-compete and that the t-CD81 binds with stronger affinity than the human molecule. Recently, h-CD81 residue 186 has been characterized as the critical residue involved in the interaction with E2. Recombinant CD81 mutant proteins were expressed to test whether human and tamarin receptors interacted with E2 in a comparable manner. Mutation of residue 186 (F186L) dramatically reduced the binding capability of t-CD81, a result that has already been demonstrated for the human receptor, whereas the opposite mutation (L186F) in agm-CD81 resulted in a neat gain of binding activity. Finally, the in vitro data were confirmed by detection of E2 binding to cotton-top tamarin (Saguinus oedipus) cell line B95-8 expressing endogenous CD81. These results indicate that the binding of E2 to CD81 is not predictive of an infection-producing interaction between HCV and host cells.  相似文献   

8.
Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.  相似文献   

9.
The tetraspanin CD81 plays an essential role in diverse cellular processes. CD81 also acts as an entry receptor for HCV through an interaction between the large extracellular loop (LEL) of CD81 and HCV glycoprotein E2. The E2-CD81 interaction also results in immunomodulatory effects in vitro. In this study, we examined the relationship between the dimeric crystal structure of the CD81 LEL and intact CD81. Using random mutagenesis, amino acids were identified that abolished dimerization of recombinant LEL in regions that were important for intermonomer contacts (F150S and V146E), salt bridge formation (K124T), and intramonomer disulfide bonding (T166I, C157S, and C190R). Two monomeric LEL mutants retained the ability to bind E2, K124T, and V146E, whereas F150S, T166I, C157S, and C190R did not. Introduction of K124T, V146E, and F150S mutations in full-length CD81 did not affect its oligomerization and the effects on E2 binding were less severe than for isolated LEL. These results suggest that the LEL has a more robust structure in the intact tetraspanin with regions outside the LEL contributing to CD81 dimerization.  相似文献   

10.
Mechanisms of virion attachment, interaction with its receptor, and cell entry are poorly understood for hepatitis C virus (HCV) because of a lack of an efficient and reliable in vitro system for virus propagation. Infectious HCV retroviral pseudotype particles (HCVpp) were recently shown to express native E1E2 glycoproteins, as defined in part by HCV human monoclonal antibodies (HMAbs) to conformational epitopes on E2, and some of these antibodies block HCVpp infection (A. Op De Beeck, C. Voisset, B. Bartosch, Y. Ciczora, L. Cocquerel, Z. Y. Keck, S. Foung, F. L. Cosset, and J. Dubuisson, J. Virol. 78:2994-3002, 2004). Why some HMAbs are neutralizing and others are nonneutralizing is looked at in this report by a series of studies to determine the expression of their epitopes on E2 associated with HCVpp and the role of antibody binding affinity. Antibody cross-competition defined three E2 immunogenic domains with neutralizing HMAbs restricted to two domains that were also able to block E2 interaction with CD81, a putative receptor for HCV. HCVpp immunoprecipitation showed that neutralizing and nonneutralizing domains are expressed on E2 associated with HCVpp, and affinity studies found moderate-to-high-affinity antibodies in all domains. These findings support the perspective that HCV-specific epitopes are responsible for functional steps in virus infection, with specific antibodies blocking distinct steps of virus attachment and entry, rather than the perspective that virus neutralization correlates with increased antibody binding to any virion surface site, independent of the epitope recognized by the antibody. Segregation of virus neutralization and sensitivity to low pH to specific regions supports a model of HCV E2 immunogenic domains similar to the antigenic structural and functional domains of other flavivirus envelope E glycoproteins.  相似文献   

11.
The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process.  相似文献   

12.
Hepatitis C virus (HCV) entry into isolated primary liver cells and cell lines requires interaction with the cell surface receptors. The study of HCV attachment with host cell surface receptors has been hindered by the unavailability of competent cell culture based system for HCV propagation. This problem has been overcome by the development of genetically tagged infectious HCV pseudo particles (HCVpp) harboring unmodified E1 and E2 glycoproteins. Studies using cell binding assays together with infection assays using HCVpp have shown that CD81 and scavenger receptor (SRBI) are actively involved in binding with envelope proteins facilitating the viral entrance process. This paper aimed to develop HCVpp of local HCV 3a Pakistani isolate and to study the viral tropism role of CD81 and SRBI receptors in HCV infectivity. HCV E1 and E2 genes were amplified and cloned in mammalian expression vector pcDNA 3.1/myc. The expressing plasmid of HCV E1–E2 glycoprotein in native form was co-transfected into 293FT cells with lentiviral packaging plasmid encoding the MLV Gag–Pol core proteins, and a packaging competent MLV-derived genome (pMLVYCMV-Luc) encoding the luciferase marker protein to produce infectious HCVpp. Anti-CD81 antibody (CBL579), anti-SRBI type II antibody (sc-20441) HCV anti-E2 mouse IgG1 (sc-65457) and HCV anti-E1 antibody mouse IgG1 (sc-65459) were used in this setup. We showed that primary site of viral replication is liver which involve CD81 and SRBI receptors for HCV gp-dependent infection with HCVpp. This is the preliminary reported cell cultured based mechanism from Pakistan which facilitated functional studies of different antiviral agents. Understanding of this technique will help in development of new antiviral therapeutics focusing on earlier steps of HCV life cycle. We have developed infectious pseudo particles of local 3a-isolate and concluded that a number of liver-specific surface proteins function along with CD81 and SRBI receptor regarding HCV infectivity. To endeavors and to identify this liver specific co-receptor molecule(s) will provide insights into the role of these molecules in the initial steps of HCV life cycle.  相似文献   

13.
Many viruses target the polarized epithelial apex during host invasion. In contrast, hepatitis C virus (HCV) engages receptors at the basal surface of hepatocytes in the polarized liver parenchyma. Hepatocyte polarization limits HCV entry by undefined mechanism(s). Given the recent reports highlighting a role for receptor mobility in pathogen entry, we studied the effect(s) of hepatocyte polarization on viral receptor and HCV pseudoparticle (HCVpp) dynamics using real‐time fluorescence recovery after photobleaching and single particle tracking. Hepatoma polarization reduced CD81 and HCVpp dynamics at the basal membrane. Since cell polarization is accompanied by changes in the actin cytoskeleton and CD81 links to actin via its C‐terminus, we studied the dynamics of a mutant CD81 lacking a C‐terminal tail (CD81ΔC) and its effect(s) on HCVpp mobility and infection. CD81ΔC showed an increased frequency of confined trajectories and a reduction of Brownian diffusing molecules compared to wild‐type protein in non‐polarized cells. However, these changes were notobserved in polarized cells. HCVpp showed a significant reduction in Brownian diffusion and infection of CD81ΔC expressing non‐polarized cells. In summary, these data highlight the dynamic nature of CD81 and demonstrate a role for CD81 lateral diffusion to regulate HCV infection in a polarization‐dependent manner.  相似文献   

14.
Hepatitis C virus (HCV) is a major human pathogen associated with life-threatening liver disease. Entry into hepatocytes requires CD81 and a putative second receptor. In this study, we elucidated the postreceptor attachment stages of HCV entry using HCV pseudoparticles (HCVpp) as a model system. By means of dominant-negative mutants and short interfering RNAs of various cellular proteins, we showed that HCVpp enter via clathrin-coated vesicles and require delivery to early but not to late endosomes. However, the kinetics of HCV envelope glycoprotein-mediated fusion are delayed compared to those of other viruses that enter in early endosomes. Entry of HCVpp can be efficiently blocked by bafilomycin A1, which neutralizes the pH in early endosomes and impairs progression of endocytosis beyond this stage. However, low-pH exposure of bafilomycin A1-treated target cells does not induce entry of HCVpp at the plasma membrane or in the early stages of endocytosis. These observations indicate that, subsequent to internalization, HCVpp entry necessitates additional, low-pH-dependent interactions, modifications, or trafficking, and that these events are irreversibly disrupted by bafilomycin A1 treatment.  相似文献   

15.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

16.
The hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer that mediates CD81 receptor binding and viral entry. In this study, we used site-directed mutagenesis to examine the functional role of a conserved G436WLAGLFY motif of E2. The mutants could be placed into two groups based on the ability of mature virion-incorporated E1E2 to bind the large extracellular loop (LEL) of CD81 versus the ability to mediate cellular entry of pseudotyped retroviral particles. Group 1 comprised E2 mutants where LEL binding ability largely correlated with viral entry ability, with conservative and nonconservative substitutions (W437 L/A, L438A, L441V/F, and F442A) inhibiting both functions. These data suggest that Trp-437, Leu-438, Leu-441, and Phe-442 directly interact with the LEL. Group 2 comprised E2 glycoproteins with more conservative substitutions that lacked LEL binding but retained between 20% and 60% of wild-type viral entry competence. The viral entry competence displayed by group 2 mutants was explained by residual binding by the E2 receptor binding domain to cellular full-length CD81. A subset of mutants maintained LEL binding ability in the context of intracellular E1E2 forms, but this function was largely lost in virion-incorporated glycoproteins. These data suggest that the CD81 binding site undergoes a conformational transition during glycoprotein maturation through the secretory pathway. The G436P mutant was an outlier, retaining near-wild-type levels of CD81 binding but lacking significant viral entry ability. These findings indicate that the G436WLAGLFY motif of E2 functions in CD81 binding and in pre- or post-CD81-dependent stages of viral entry.  相似文献   

17.
CD81 has been described as a putative receptor for hepatitis C virus (HCV); however, its role in HCV cell entry has not been characterized due to the lack of an efficient cell culture system. We have examined the role of CD81 in HCV glycoprotein-dependent entry by using a recently developed retroviral pseudotyping system. Human immunodeficiency virus (HIV) pseudotypes bearing HCV E1E2 glycoproteins show a restricted tropism for human liver cell lines. Although all of the permissive cell lines express CD81, CD81 expression alone is not sufficient to allow viral entry. CD81 is required for HIV-HCV pseudotype infection since (i) a monoclonal antibody specific for CD81 inhibited infection of susceptible target cells and (ii) silencing of CD81 expression in Huh-7.5 hepatoma cells by small interfering RNAs inhibited HIV-HCV pseudotype infection. Furthermore, expression of CD81 in human liver cells that were previously resistant to infection, HepG2 and HH29, conferred permissivity of HCV pseudotype infection. The characterization of chimeric CD9/CD81 molecules confirmed that the large extracellular loop of CD81 is a determinant for viral entry. These data suggest a functional role for CD81 as a coreceptor for HCV glycoprotein-dependent viral cell entry.  相似文献   

18.
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.  相似文献   

19.
Functional hepatitis C virus envelope glycoproteins   总被引:8,自引:0,他引:8  
Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that are released from HCV polyprotein by signal peptidase cleavage. These proteins assemble as a noncovalent heterodimer that is retained in the endoplasmic reticulum. The transmembrane domains of E1 and E2 are multifunctional and play a major role in the biogenesis of E1E2 heterodimer. Because HCV does not replicate efficiently in cell culture, surrogate models have been developed to study some steps of its life cycle. Recently, infectious pseudotype particles (HCVpp) harboring unmodified E1E2 glycoproteins onto retroviral core particles have successfully been generated. They mimic the function of native HCV particles, thus representing a model to study the early steps of its lifecycle. The noncovalent E1E2 heterodimers present at the surface of the HCVpp, which contain complex-type glycans indicating modification by Golgi enzymes, are likely to mediate virus entry. The CD81 tetraspanin and the scavenger receptor SR-BI, two cellular molecules shown to interact with E2, are essential for HCVpp entry. However, these two proteins are not sufficient to provide entry functions in non permissive cells, suggesting that additional unidentified cellular factor(s) are necessary for HCVpp entry. Potential structural homology with other fusion proteins from closely related viruses suggest that HCV envelope glycoproteins belong to class II fusion proteins, but contrary to what is observed for other viral envelope proteins of this class, they are highly glycosylated and are not matured by a cellular endoprotease cleavage.  相似文献   

20.
Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号