首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetes is the most prevalent metabolic disorder causing a high rate of mortality and morbidity. Recently alpha-amylase is reported to be good drug design target for the treatment of diabetes mellitus. We have designed 116 molecules based on aza-Michael adduct of trans-chalcone as 1,3 diaryl-3-(arylamino)propan-1-ones which were studied by molecular docking and among them best six derivatives were synthesized easily via aza-Michael addition on trans-chalcone using KOH as a catalyst and evaluated for alpha-amylase inhibition along with antioxidant activity. It was observed that all compounds have alpha-amylase inhibitory activity but at different extents. The molecule 3e is the most potent alpha-amylase inhibitor of this series. 3a is the second most potent compound, whereas only one molecule 3d has shown antioxidant activity.  相似文献   

2.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

3.
Comparison of cell-wall-bound extracellular proteinases (CEPs) from Lactobacillus paracasei (LBP) ssp. paracasei natural isolates BGHN14, BGAR75 and BGAR76 with Lactococcus lactis (LCL) ssp. cremoris Wg2, in their action on αS1-, β- and κ-casein was done. The CEPs of LBP strains were able to degrade αS1- and β-caseins and their caseinolytic specificity depended on the type of buffer used. These CEPs, compared with LCL Wg2, differ in four amino acid residues in small segments predicted to be involved in substrate binding. The most striking features of this comparison are the presence of Ala instead of Ser329 and the presence of Thr instead of Asn256 and Ala299, in the subtilisin-like region of the CEP in LBP natural isolates. Additional conservative amino acid substitution Leu to Ile364 was found.  相似文献   

4.
trans -dichloroplatinum(II) complexes exhibit antitumor activity violate the classical structure-activity relationships of platinum(II) complexes. These novel “nonclassical”trans platinum complexes also comprise those containing planar aromatic amines. Initial studies have shown that these compounds form a considerable amount of DNA interstrand cross-links (up to ∼30%) with a rate markedly higher than clinically ineffective transplatin. The present work has shown, using Maxam-Gilbert footprinting, that trans-[PtCl2(NH3)(quinoline)] and trans-[PtCl2(NH3)(thiazole)], representatives of the group of new antitumor trans-dichloroplatinum complexes containing planar amines, preferentially form DNA interstrand cross-links between guanine residues at the 5′-GC-3′ sites. Thus, DNA interstrand cross-linking by trans-[PtCl2(NH3)(quinoline)] and trans-[PtCl2(NH3)(thiazole)] is formally equivalent to that by antitumor cisplatin, but different from clinically ineffective transplatin which preferentially forms these adducts between complementary guanine and cytosine residues. This result shows for the first time that simple chemical modification of the structure of an inactive compound alters its DNA binding site into a DNA adduct of an active drug. Received: 6 January 2000 / Accepted: 8 March 2000  相似文献   

5.
MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man6GlcNAc2 accompanied by small amounts of Man5GlcNAc2, Man7GlcNAc2 and Man8GlcNAc2. Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (β1→4-linked to the central mannose) and with varying numbers of α-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.  相似文献   

6.
We report a convenient and efficient method for the preparation of prostaglandin 2,3-dinor-6-keto-F1α by incubating prostaglandin 6-keto-PGF1α (6-keto-PGF1α) with dispersed rat hepatocytes. Chromatographic separation revealed a single product from the hepatocyte metabolism of 6-keto-PGF1α whose structure was positively confirmed by mass spectrometry as 2,3 dinor-6-keto-PGF1α. This methods allowed for the preparation of high specific activity radioactive 2,3-dinor-6-keto-PGF1α which can be utilized to determine the recovery of urinary dinor-6-keto-PGF1α during extraction and separation of the compound for radioimmunoassay measurements, as well as deuterated 2,3-dinor-6-keto-PGF1α which can be used as an internal standard in the gas chromatography-mass spectrometric assay of this compound.  相似文献   

7.
Previous reports have suggested that high-doseL-arginine could be used in diabetic patients as a prophylactic blocker for the initial glycation reaction of proteins by methylglyoxal (MG), a reactive dicarbonyl compound of glucose metabolism. Here, we present several lines of evidence to substantiate that this prophylactic intervention may be inappropriate and should be used with care. First, we demonstrated that when various concentrations ofL-arginine (2.0–8.0 mM) were added to a fixed concentration of MG (1.56 µM) in a buffered lucigenin solution, dose-dependent generation of superoxide anion (O 2 )-mediated ultraweak chemiluminescence (uwCL) occurs. The suppression of uwCL generation by exogenously added superoxide dismutase further substantiated that the interaction between MG andL-arginine generated O 2 . This phenomenon can also be demonstrated in a serum-based system. Furthermore, when a fixed concentration ofL-arginine (8.0 mM) was added exogenously to a group of sera obtained from either diabetic patients (n=10) or their matched nondiabetic controls (n=10), a marked discrepancy in the generation of O 2 -mediated uwCL could be demonstrated (12,534 ± 3,147 vs. 950 ± 350 counts; p<0.001). Taken together, this evidence demonstrates that the appropriateness of using high-doseL-arginine for prophylactic measures in diabetic patients may be questioned, because the inhibition of the glycation reaction between MG and proteins by high-doseL-arginine unexpectedly produces plethoric O 2 as a by-product, which may subsequently aggravate the preexisting oxidative stress status of diabetic patients.  相似文献   

8.
(NIn)‐Formyl protective group of tryptophan has been introduced as a base/nucleophile‐labile protective group. It has long been known that a free ‐amino group of the peptide can serve as a nucleophile: an irreversible formyl NIn → NH2 transfer is consistently observed when deformylation is performed last on an otherwise deprotected peptide that possesses free ‐amino group. Obviously, this particular side reaction should be expected any time free amino group is exposed to Trp(For), but, at the best of our knowledge, has never been reported in the course of Boc‐SPPS. In the present communication, we describe a set of appropriately designed model experiments that permitted to detect the title side reaction both in solution and in solid‐phase reactions. We observed intermolecular formyl group transfer with a model compound, Trp(For)‐NH2. Importantly, we also observed this migration on solid support with the rate roughly estimated to be up to 1% of residues per minute. We also observed that the formyl‐group transfer reaction occurred in a sequence‐dependent manner and was suppressed to a non‐detectable level using ‘in situ neutralization’ technique. Because this side reaction is sequence dependent, there might be situations when the rate of the formation of Nα‐formyl termination by‐products is significant. In other cases, the Nα‐For truncated by‐products would not contaminate the final peptide significantly but still could be a source of microheterogeneity. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Some novel derivatives of Bis-chalcone were synthesized and characterized by their physical and spectral data. All the synthesized compounds were subsequently screened for in vitro globin hydrolysis, β-hematin formation, and murine Plasmodium berghei, using chloroquine as the reference drug. Most of the synthesized compounds exhibited mild to moderate susceptibilities toward the parasite in comparison with the standard. The most active antimalarial compound was 1,1-Bis-[(3′,4′-N-(urenylphenyl)-3-(3″,4″,5″-trimethoxyphenyl)]-2-propen-1-one 5, with a percentage of inhibition of heme polymerization of 87.05?±?0.77, and this compound increased the survival time after infection, reduce the parasitemia and delay the progression of malaria.  相似文献   

10.
Coumarins are the most important class of natural compounds found widely in various plants. Many coumarin derivatives with different biological and pharmacological activities have been synthesized. In this study, the antiapoptotic and cytotoxic effects and DNA‐binding properties of some synthetic coumarin derivatives (4b, 4d, 4f, 4 g (DBP‐g), 4 h and 4j) against K562 cell lines were investigated using different techniques. MTT assay indicated that the DBP‐g compound was more active than other derivatives, with a IC50 value of 55 μM, and therefore this compound was chosen for further investigation. Apoptosis induction was assessed using acridine orange/ethidium bromide double‐staining and cell‐cycle analysis. In addition, in vitro DNA‐binding studies were carried out using ultraviolet–visible light absorption and fluorescence spectroscopy, as well as viscosity measurement and molecular modelling studies. In vitro results indicated that DBP‐g interacted with DNA through a groove‐binding mode with a binding constant (Kb) of 1.17 × 104 M?1. In agreement with other experimental data, molecular docking studies showed that DBP‐g is a minor groove binder. Overall, it can be concluded that DBP‐g could be used as an effective and novel chemotherapeutic agent.  相似文献   

11.
Abstract

The α-Amylase and α-glucosidase are two main enzymes involved in carbohydrate metabolism. This study was aimed at detecting alpha-amylase inhibitory activity from edible mushroom mycelia. Oyster mushroom was collected from a natural source, from Indian Institute of Technology (Banaras Hindu University) campus and was maintained in vitro in mycelial form. Chloroform, acetone, methanol, and water were used separately for extraction of an active constituent from mycelial cells grown, for 7?days, in potato dextrose broth. The extracts were tested for alpha-amylase inhibitory activity. Chloroform, acetone, and methanol extracts were found to have alpha-amylase inhibitory activity, with IC50 values of 1.71, 224, and 383?μg/mL, respectively. Aqueous extract had no enzyme inhibitory activity. The acetone extract inhibited α-amylase non-competitively whereas chloroform extract showed competitive inhibition. Acetone extraction yielded highest total phenolic content (TPC) of 0.524?mM of gallic acid equivalent, whereas chloroform extraction resulted in lowest TPC of 0.006?mM. The HPLC and absorbance maxima of acetone and chloroform extracts suggest that the bioactive component responsible for enzyme inhibition could be glycoproteins in chloroform extract and catechins (flavonoids) in acetone extract. Thus, the mushroom mycelia under study may be exploited for production and purification of a lead compound for the development of the α-amylase inhibitory drug.  相似文献   

12.
Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in nuclear fuel processing and chemical industries. Rhodopseudomonas palustris, one of the most metabolically versatile photosynthetic bacteria, is shown here to degrade TBP efficiently under photosynthetic conditions. This study shows that this O2- and NADPH/FMNH2-dependent process was also catalyzed when TBP was incubated with membrane-associated proteins extracted from this strain. The effects of several regulators of cytochrome P450 activity on the TBP consumption suggest a key role for a cytochrome P450 in this process. Disruption of the rpa0241 gene encoding a putative cytochrome P450 led to a 60% decrease of the TBP catabolism, whereas reintroducing the gene in the mutant restored the wild-type phenotype. The rpa0241 gene was expressed and purified in Escherichia coli. Characterization by UV-visible spectroscopy of the purified recombinant membrane-bound protein (CYP201A2) encoded by the rpa0241 gene revealed typical spectral characteristics of cytochrome P450 with a large spin state change of the heme iron associated with binding of TBP (K d ≈ 65 μM). It is proposed that CYP201A2 catalyzes the initial step of the biodegradation process of TBP.  相似文献   

13.
The Gloeobacter ligand-gated ion channel (GLIC) is a bacterial homolog of vertebrate Cys-loop ligand-gated ion channels. Its pore-lining region in particular has a high sequence homology to these related proteins. Here we use electrophysiology to examine a range of compounds that block the channels of Cys-loop receptors to probe their pharmacological similarity with GLIC. The data reveal that a number of these compounds also block GLIC, although the pharmacological profile is distinct from these other proteins. The most potent compound was lindane, a GABAA receptor antagonist, with an IC50 of 0.2 μM. Docking studies indicated two potential binding sites for this ligand in the pore, at the 9′ or between the 0′ and 2′ residues. Similar experiments with picrotoxinin (IC50 = 2.6 μM) and rimantadine (IC50 = 2.6 μM) reveal interactions with 2′Thr residues in the GLIC pore. These locations are strongly supported by mutagenesis data for picrotoxinin and lindane, which are less potent in a T2′S version of GLIC. Overall, our data show that the inhibitory profile of the GLIC pore has considerable overlap with those of Cys-loop receptors, but the GLIC pore has a unique pharmacology.  相似文献   

14.
Although a large number of AroA enzymes (5-enopyruvylshikimate-3-phosphate synthase [EPSPS]) have been identified, cloned and tested for glyphosate resistance, only AroA variants derived from Agrobacterium tumefaciens strain CP4 have been successfully used commercially. We have now used a polymerase chain reaction (PCR)-based two-step DNA synthesis (PTDS) method to synthesize an aroA gene (aroA H. orenii ) from Halothermothrix orenii H168 encoding a new EPSPS similar to AroA A. tumefaciens CP4. AroA H. orenii was then expressed in Escherichia coli and key kinetic values of the purified enzyme were determined. Kinetic analysis of AroA H. orenii indicated that the full-length enzyme exhibited increased tolerance to glyphosate compared with E. coli AroA E. coli while retaining a high affinity for the substrate phosphoenolpyruvate. Transgenic Arabidopsis plants containing aroA H. orenii were resistant to 15 mM glyphosate. Site-directed mutagenesis showed that residues Thr355Ser affected the affinity of AroA H. orenii for glyphosate, providing further evidence that specific amino acid residues are responsible for differences in enzymatic behavior among different AroA enzymes.  相似文献   

15.
Based on the original thermostable alpha-amylase gene from Bacillus licheniformis, two amino acids were site-directed mutagenised by polymerase chain reaction to obtain a new gene. This gene, with Leu134→Arg and Ser320→Ala, was substituted for acid-resistant capability previously. To favor purification of the product, high-level expression and secretion of mature, authentic and stable recombinant mutagenised alpha-amylase were achieved with protease-deficient strain Bacillus subtilis WB600 as the host. The recombinant mutagenised alpha-amylase with the activity of 4,700 U/mL was then purified by ammonium sulphate fractionation, anion exchange and gel filtration, consecutively. By multi-step purification, the specific activity of the recombinant protein was up to 916.7 U/mg with a 187.1-fold purification. The mutagenised protein was found to be more acid resistant than the native protein. The optimum pH and stable range of pH with the mutagenised protein was 4.5 and 4.0 to 6.5, respectively, compared with pH 6.5 and 5.5 to 7.0 as the favorite pH and pH stability range of the native protein.  相似文献   

16.
Rapid evolution of snake venom genes by positive selection has been reported previously but key features of this process such as the targets of selection, rates of gene turnover, and functional diversity of toxins generated remain unclear. This is especially true for closely related species with divergent diets. We describe the evolution of PLA2 gene sequences isolated from genomic DNA from four taxa of Sistrurus rattlesnakes which feed on different prey. We identified four to seven distinct PLA2 sequences in each taxon and phylogenetic analyses suggest that these sequences represent a rapidly evolving gene family consisting of both paralogous and homologous loci with high rates of gene gain and loss. Strong positive selection was implicated as a driving force in the evolution of these protein coding sequences. Exons coding for amino acids that make up mature proteins have levels of variation two to three times greater than those of the surrounding noncoding intronic sequences. Maximum likelihood models of coding sequence evolution reveal that a high proportion (∼30%) of all codons in the mature protein fall into a class of codons with an estimated d N /d S (ω) ratio of at least 2.8. An analysis of selection on individual codons identified nine residues as being under strong (p < 0.01) positive selection, with a disproportionately high proportion of these residues found in two functional regions of the PLA2 protein (surface residues and putative anticoagulant region). This is direct evidence that diversifying selection has led to high levels of functional diversity due to structural differences in proteins among these snakes. Overall, our results demonstrate that both gene gain and loss and protein sequence evolution via positive selection are important evolutionary forces driving adaptive divergence in venom proteins in closely related species of venomous snakes.  相似文献   

17.
A bioinformatic approach was used for the identification of residues that are conserved within the Nramp family of metal transporters. Site-directed mutagenesis was then carried out to change six conserved acidic residues (i.e., Asp-34, Glu-102, Asp-109, Glu-112, Glu-154, and Asp-238) in the E. coli Nramp homolog mntH. Of these six, five of them, Asp-34, Glu-102, Asp-109, Glu-112, and Asp-238 appear to be important for function since conservative substitutions at these sites result in a substantial loss of transport function. In addition, all of the residues within the signature sequence of the Nramp family, DPGN, were also mutated in this study. Each residue was changed to several different side chains, and of ten site-directed mutations made in this motif, only P35G showed any measurable level of 54Mn2+ uptake with a Vmax value of approximately 10% of wild-type and a slightly elevated Km value. Overall, the data are consistent with a model where helix breakers in the conserved DPGN motif in TMS-1 provide a binding pocket in which Asp-34, Asn-37, Asp-109, Glu-112 (and possibly other residues) are involved in the coordination of Mn2+. Other residues such as Glu-102 and Asp238 may play a role in the release of Mn2+ to the cytoplasm or may be involved in maintaining secondary structure.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

18.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

19.
The assembly of two deletion mutants of the Rieske iron-sulfur protein into the cytochrome bc 1 complex was investigated after import in vitro into mitochondria isolated from a strain of yeast, JPJ1, from which the iron-sulfur protein gene (RIP) had been deleted. The assembly process was investigated by immunoprecipitation of the labeled iron-sulfur protein or the two deletion mutants from detergent-solubilized mitochondria with specific antisera against either the iron-sulfur protein or the bc 1 complex (complex III) [Fu and Beattie (1991). J. Biol. Chem. 266, 16212–16218]. The deletion mutants lacking amino acid residues 55–66 or residues 161–180 were imported into mitochondria in vitro and processed to the mature form via an intermediate form. After import in vitro, the protein lacking residues 161–180 was not assembled into the complex, suggesting that the region of the iron-sulfur protein containing these residues may be involved in the assembly of the protein into the bc 1 complex; however, the protein lacking residues 55–66 was assembled in vitro into the bc 1 complex as effectively as the wild type iron-sulfur protein. Moreover, this mutant protein was present in the mitochondrial membrane fraction obtained from JPJ1 cells transformed with a single-copy plasmid containing the gene for this protein lacking residues 55–66. This deletion mutant protein was also assembled into the bc 1 complex in vivo, suggesting that the hydrophobic stretch of amino acids, residues 55–66, is not required for assembly of the iron-sulfur protein into the bc 1 complex; however, this association did not lead to enzymatic activity of the bc 1 complex, as the Rieske FeS cluster was not epr detectable in these mitochondria.  相似文献   

20.
Chlorite dismutase (Cld) is a heme enzyme capable of rapidly and selectively decomposing chlorite (ClO2 ) to Cl and O2. The ability of Cld to promote O2 formation from ClO2 is unusual. Heme enzymes generally utilize ClO2 as an oxidant for reactions such as oxygen atom transfer to, or halogenation of, a second substrate. The X-ray crystal structure of Dechloromonas aromatica Cld co-crystallized with the substrate analogue nitrite (NO2 ) was determined to investigate features responsible for this novel reactivity. The enzyme active site contains a single b-type heme coordinated by a proximal histidine residue. Structural analysis identified a glutamate residue hydrogen-bonded to the heme proximal histidine that may stabilize reactive heme species. A solvent-exposed arginine residue likely gates substrate entry to a tightly confined distal pocket. On the basis of the proposed mechanism of Cld, initial reaction of ClO2 within the distal pocket generates hypochlorite (ClO) and a compound I intermediate. The sterically restrictive distal pocket probably facilitates the rapid rebound of ClO with compound I forming the Cl and O2 products. Common to other heme enzymes, Cld is inactivated after a finite number of turnovers, potentially via the observed formation of an off-pathway tryptophanyl radical species through electron migration to compound I. Three tryptophan residues of Cld have been identified as candidates for this off-pathway radical. Finally, a juxtaposition of hydrophobic residues between the distal pocket and the enzyme surface suggests O2 may have a preferential direction for exiting the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号