首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein kinase N1 (PKN1) is a member of the protein kinase C superfamily. Aberrations of PKN1 kinase activity are involved in several human pathological processes, including cancer. We found that PKN family proteins (PKN1/2/3) are phosphorylated in response to antitubulin drug-induced mitotic arrest. We identified cyclin-dependent kinase 1 (CDK1) as the corresponding kinase for PKN protein phosphorylation. CDK1 phosphorylates PKN1 at S533, S537, S562, and S916 in vitro and in cells during drug-induced mitotic arrest. Immunofluorescence staining further confirmed that PKN1 phosphorylation occurs during normal mitosis in a CDK1-dependent manner. Knockdown of PKN1 significantly inhibited anchorage-independent growth and migration without affecting proliferation in multiple cancer cell lines. We further showed that mitotic phosphorylation is essential for PKN1's oncogenic function, as the non-phosphorylatable mutant PKN1-4A failed to rescue anchorage-independent growth and migration in PKN1-knockdown cells. Thus, our findings reveal a novel regulatory mechanism for PKN1 in mitosis and its role in tumorigenesis.  相似文献   

3.
4.
Developmental changes in the root apex and accompanying changes in lateral root growth and root hydraulic conductivity were examined for Opuntia ficus-indica (L.) Miller during rapid drying, as occurs for roots near the soil surface, and more gradual drying, as occurs in deeper soil layers. During 7 d of rapid drying (in containers with a 3-cm depth of vermiculite), the rate of root growth decreased sharply and most root apices died; such a determinate pattern of root growth was not due to meristem exhaustion but rather to meristem mortality after 3 d of drying. The length of the meristem, the duration of the cell division cycle, and the length of the elongation zone were unchanged during rapid drying. During 14 d of gradual drying (in containers with a 6-cm depth of vermiculite), root mortality was relatively low; the length of the elongation zone decreased by 70%, the number of meristematic cells decreased 30%, and the duration of the cell cycle increased by 36%. Root hydraulic conductivity ( L P) decreased to one half during both drying treatments; L P was restored by 2 d of rewetting owing to the emergence of lateral roots following rapid drying and to renewed apical elongation following gradual drying. Thus, in response to drought, the apical meristems of roots of O. ficus-indica near the surface die, whereas deeper in the substrate cell division and elongation in root apices continue. Water uptake in response to rainfall in the field can be enhanced by lateral root proliferation near the soil surface and additionally by resumption of apical growth for deeper roots.  相似文献   

5.
The mechanisms by which plants detect water deficit and transduce that signal into adaptive responses is unknown. In maize (Zea mays L.) seedlings, primary roots adapt to low water potentials such that substantial rates of elongation continue when shoot growth is completely inhibited. In this study, in-gel protein kinase assays were used to determine whether protein kinases in the elongation zone of the primary root undergo activation or inactivation in response to water deficit. Multiple differences were detected in the phosphoprotein content of root tips of water-stressed compared with well-watered seedlings. Protein kinase assays identified water-deficit-activated protein kinases, including a 45-kD, Ca2+-independent serine/threonine protein kinase. Water-deficit activation of this kinase occurred within 30 min after transplanting seedlings to conditions of low water potential and was localized to the elongation zone, was independent of ABA accumulation, and was unaffected by cycloheximide-mediated inhibition of protein translation. These results provide evidence that the 45-kD protein kinase acts at an early step in the response of maize primary roots to water deficit and is possibly involved in regulating the adaptation of root growth to low water potential.  相似文献   

6.
The hypothesis that root apical diameter may be used to evaluate root growth potential was tested. Temporal variations in the apical diameter of individual roots of rubber seedlings ( Hevea brasiliensis ) were studied together with their elongation patterns, using root observation boxes under controlled conditions. This study confirmed the overall positive correlation between apical diameter and growth rale. Moreover, the two parameters, varied in the same way during the life of a given root. For roots with short growth duration, there was a parallel quick decrease in both apical diameter and elongation rate, whereas roots that grew for longer periods showed synchronous fluctuations for both parameters. Since the mean values for the secondary roots within a root system exhibited the same trends, variations in apical diameter and elongation rates should depend on factors influencing the whole root system. When related to shoot rhythmic growth, both apical diameter and elongation rates were depressed during the periods of leaf growth. These effects were enhanced and/or prolonged by shading, hence reinforcing the hypothesis that this development depends on assimilate availability. Such results can be interpreted in terms of a source-sink relationship within the whole plant by considering the apical diameter, representing the size of the meristem related to the number of rneristematic cells, as an indicator of each root's growth potential.  相似文献   

7.
To investigate the role of tyrosine phosphorylation/dephosphorylation processes in plant cells the morphology of Arabidopsis thaliana primary roots and the organization of cortical microtubules (MTs) were studied after inhibition of protein tyrosine kinases (PTKs) and tyrosine phosphatases (PTPs). It was found that all tested types of PTKs inhibitors (herbimycin A, genistein and tyrphostin AG 18) altered root hair growth and development, probably as a result of their significant influences on MTs organization in root hairs. The treatment also led to MTs reorientation and disruption in epidermis and cortex cells of both elongation and differentiation zones of primary roots. Enhanced tyrosine phosphorylation after treatment with a PTPs inhibitor (sodium orthovanadate) resulted in intense induction of root hair development and growth and caused a significant shortening of the elongation zone. It also led to changes of MTs orientation from transverse to longitudinal in epidermis and cortex cells of the elongation and differentiation zones of the root. From the data obtained we can suppose that tyrosine phosphorylation can be involved in the dynamics and organization of MTs in different types of plant cells.  相似文献   

8.
Mixed lineage kinase 3 (MLK3) is a serine/threonine mitogen-activated protein kinase kinase kinase that promotes the activation of multiple mitogen-activated protein kinase pathways and is required for invasion and proliferation of ovarian cancer cells. Inhibition of MLK activity causes G2/M arrest in HeLa cells; however, the regulation of MLK3 during ovarian cancer cell cycle progression is not known. Here, we found that MLK3 is phosphorylated in mitosis and that inhibition of cyclin-dependent kinase 1 (CDK1) prevented MLK3 phosphorylation. In addition, we observed that c-Jun N-terminal kinase, a downstream target of MLK3 and a direct target of MKK4 (SEK1), was activated in G2 phase when CDK2 activity is increased and then inactivated at the beginning of mitosis concurrent with the increase in CDK1 and MLK3 phosphorylation. Using in vitro kinase assays and phosphomutants, we determined that CDK1 phosphorylates MLK3 on Ser548 and decreases MLK3 activity during mitosis, whereas CDK2 phosphorylates MLK3 on Ser770 and increases MLK3 activity during G1/S and G2 phases. We also found that MLK3 inhibition causes a reduction in cell proliferation and a cell cycle arrest in ovarian cancer cells, suggesting that MLK3 is required for ovarian cancer cell cycle progression. Taken together, our results suggest that phosphorylation of MLK3 by CDK1 and CDK2 is important for the regulation of MLK3 and c-Jun N-terminal kinase activities during G1/S, G2, and M phases in ovarian cancer cell division.  相似文献   

9.
Cell cycle re-entry during vertebrate oocyte maturation is mediated through translational activation of select target mRNAs, culminating in the activation of mitogen-activated protein kinase and cyclin B/cyclin-dependent kinase (CDK) signaling. The temporal order of targeted mRNA translation is crucial for cell cycle progression and is determined by the timing of activation of distinct mRNA-binding proteins. We have previously shown in oocytes from Xenopus laevis that the mRNA-binding protein Musashi targets translational activation of early class mRNAs including the mRNA encoding the Mos proto-oncogene. However, the molecular mechanism by which Musashi function is activated is unknown. We report here that activation of Musashi1 is mediated by Ringo/CDK signaling, revealing a novel role for early Ringo/CDK function. Interestingly, Musashi1 activation is subsequently sustained through mitogen-activated protein kinase signaling, the downstream effector of Mos mRNA translation, thus establishing a positive feedback loop to amplify Musashi function. The identified regulatory sites are present in mammalian Musashi proteins, and our data suggest that phosphorylation may represent an evolutionarily conserved mechanism to control Musashi-dependent target mRNA translation.  相似文献   

10.
Cyclin-dependent kinase 16 (CDK16, PCTK1) is a poorly characterized protein kinase, highly expressed in the testis and the brain. Here, we report that CDK16 is activated by membrane-associated cyclin Y (CCNY). Treatment of transfected human cells with the protein kinase A (PKA) activator forskolin blocked, while kinase inhibition promoted, CCNY-dependent targeting of CDK16-green fluorescent protein (GFP) to the cell membrane. CCNY binding to CDK16 required a region upstream of the kinase domain and was found to be inhibited by phosphorylation of serine 153, a potential PKA phosphorylation site. Thus, in contrast to other CDKs, CDK16 is regulated by phosphorylation-controlled cyclin binding. CDK16 isolated from murine testis was unphosphorylated, interacted with CCNY, and exhibited kinase activity. To investigate the function of CDK16 in vivo, we established a conditional knockout allele. Mice lacking CDK16 developed normally, but male mice were infertile. Spermatozoa isolated from their epididymis displayed thinning and elongation of the annulus region, adopted a bent shape, and showed impaired motility. Moreover, CDK16-deficient spermatozoa had malformed heads and excess residual cytoplasm, suggesting a role of CDK16 in spermiation. Thus, CDK16 is a membrane-targeted CDK essential for spermatogenesis.  相似文献   

11.
In this study it was shown that growth factor receptors (GFR) play a crucial role in early embryogenesis of the echinoderms Hemicentrotus pulcherrimus and Clypeaster japonicus by transmitting signals to the mitogen-activated protein kinase (MAPK) pathway. The phosphorylation ratio of extracellular signal-regulated kinase 1 (ERK1) changed dynamically during early embryogenesis and showed a peak at the swimming blastula (sBl) stage. Suramin, an inhibitor of GFR, when applied during the sBl stage perturbed morphogenesis, including primary mesenchyme cell (PMC) migration, cell proliferation, archenteron elongation, spiculogenesis, pigment cell differentiation and phosphorylation of myosin light chains (MLC). Genistein, a receptor-type protein tyrosine kinase inhibitor, severely inhibited PMC migration, gastrulation and the phosphorylation of MLC. Manumycin A, a Ras inhibitor, inhibited spiculogenesis and invagination. PD98059, a MAPK/ERK kinase inhibitor, perturbed early PMC migration and pigment cell differentiation, but not spiculogenesis and gastrulation (although these two events were significantly delayed). PMC ingression was not perturbed by genistein, suramin, manumycin A or PD98059. All of the inhibitors perturbed the phosphorylation of ERK1, which was completely restored by exogenous platelet-derived growth factor (PDGF)-AB. PDGF-AB also partially restored elongation of the archenteron by restoring cell proliferation that had been perturbed by suramin.  相似文献   

12.
13.
Src kinase regulation by phosphorylation and dephosphorylation   总被引:10,自引:0,他引:10  
Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPalpha, PTPepsilon, and PTPlambda. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.  相似文献   

14.
Arabidopsis plants responding to phosphorus (P) deficiency increase lateral root formation and reduce primary root elongation. In addition the number and length of root hairs increases in response to P deficiency. Here we studied the patterns of radical oxygen species (ROS) in the roots of Arabidopsis seedlings cultured on media supplemented with high or low P concentration. We found that P availability affected ROS distribution in the apical part of roots. If plants were grown on high P medium, ROS were located in the root elongation zone and quiescent centre. At low P ROS were absent in the elongation zone, however, their synthesis was detected in the primary root meristem. The proximal part of roots was characterized by ROS production in the lateral root primordia and in elongation zones of young lateral roots irrespective of P concentration in the medium. On the other hand, plants grown at high or low P differed in the pattern of ROS distribution in older lateral roots. At high P, the elongation zone was the primary site of ROS production. At low P, ROS were not detected in the elongation zone. However, they were present in the proximal part of the lateral root meristem. These results suggest that P deficiency affects ROS distribution in distal parts of Arabidopsis roots. Under P-sufficiency ROS maximum was observed in the elongation zone, under low P, ROS were not synthesized in this segment of the root, however, they were detected in the apical root meristem.  相似文献   

15.
16.
Nazario GM  Lovatt CJ 《Plant physiology》1993,103(4):1203-1210
We used a video digitizer system to (a) measure changes in the pattern of longitudinal surface extension in primary roots of maize (Zea mays L.) upon application and withdrawal of auxin and (b) compare these patterns during gravitropism in control roots and roots pretreated with auxin. Special attention was paid to the distal elongation zone (DEZ), arbitrarily defined as the region between the meristem and the point within the elongation zone at which the rate of elongation reaches 0.3 of the peak rate. For roots in aqueous solution, the basal limit of the DEZ is about 2.5 mm behind the tip of the root cap. Auxin suppressed elongation throughout the elongation zone, but, after 1 to 3 h, elongation resumed, primarily as a result of induction of rapid elongation in the DEZ. Withdrawal of auxin during the period of strong inhibition resulted in exceptionally rapid elongation attributable to the initiation of rapid elongation in the DEZ plus recovery in the main elongation zone. Gravistimulation of auxin-inhibited roots induced rapid elongation in the DEZ along the top of the root. This resulted in rapid gravitropism even though the elongation rate of the root was zero before gravistimulation. The results indicate that cells of the DEZ differ from cells in the bulk of the elongation zone with respect to auxin sensitivity and that DEZ cells play an important role in gravitropism.  相似文献   

17.
DNA synthesis in cell nuclei and organelles in the root apicalmeristem of rice was analysed by anti-BrdU immunofluorescencemicroscopy to determine whether there is a specific order ofthese events in monocot roots. In the root meristem, organelleDNAs were synthesized in a specific region in the distal partof the root apical meristem, and were not synthesized in theroot meristem‘s proximal region or the elongation zone.In contrast, cell nuclear DNA was synthesized throughout theroot apical meristem, except in the quiescent centre. In theroot cap of rice, DNA synthesis in both cell nuclei and organellenucleoids was detected only in the two layers of cells at theproximal end, which is a striking characteristic of monocotyledonousplants. Moreover, to determine quantitatively the activity ofDNA synthesis in cell nuclei and organelle nucleoids in micro-scalesections of plant tissues, we developed novel techniques formicro-scale hybridization and immuno-detection analysis. Atthe distal end of the root apical meristem, DNA levels of plastidsand mitochondria were 4-fold and 5-fold greater than those inthe elongation zone, respectively. Intracellular organelle DNAlevels dropped rapidly as the distance from the root tip increased.The activity of organelle DNA synthesis in the distal end ofthe root apical meristem was about 10-fold greater than thatin the elongation zone. Our present results confirm that nuclearand organelle DNA synthesis are not synchronized, but the latteroccurs preferentially before multiple cell divisions. Key words: Organelle DNA synthesis, organelle nucleoids (organelle nuclei), root apical meristem, anti-bromo-deoxyuridine immunofluorescence microscopy, rice.  相似文献   

18.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号