首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Schwille  U Haupts  S Maiti    W W Webb 《Biophysical journal》1999,77(4):2251-2265
Multiphoton excitation (MPE) of fluorescent probes has become an attractive alternative in biological applications of laser scanning microscopy because many problems encountered in spectroscopic measurements of living tissue such as light scattering, autofluorescence, and photodamage can be reduced. The present study investigates the characteristics of two-photon excitation (2PE) in comparison with confocal one-photon excitation (1PE) for intracellular applications of fluorescence correlation spectroscopy (FCS). FCS is an attractive method of measuring molecular concentrations, mobility parameters, chemical kinetics, and fluorescence photophysics. Several FCS applications in mammalian and plant cells are outlined, to illustrate the capabilities of both 1PE and 2PE. Photophysical properties of fluorophores required for quantitative FCS in tissues are analyzed. Measurements in live cells and on cell membranes are feasible with reasonable signal-to-noise ratios, even with fluorophore concentrations as low as the single-molecule level in the sampling volume. Molecular mobilities can be measured over a wide range of characteristic time constants from approximately 10(-3) to 10(3) ms. While both excitation alternatives work well for intracellular FCS in thin preparations, 2PE can substantially improve signal quality in turbid preparations like plant cells and deep cell layers in tissue. At comparable signal levels, 2PE minimizes photobleaching in spatially restrictive cellular compartments, thereby preserving long-term signal acquisition.  相似文献   

2.
Understanding the mRNA life cycle requires information about the dynamics and macromolecular composition and stoichiometry of mRNPs. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are appealing technologies to study these macromolecular structures because they have single molecule sensitivity and readily provide information about their molecular composition and dynamics. Here, we demonstrate how FCS can be exploited to study cytoplasmic mRNPs with high accuracy and reproducibility in cell lysates. Cellular lysates not only recapitulate data from live cells but provide improved readings and allow investigation of single mRNP analysis under particular conditions or following enzymatic treatments. Moreover, FCCS employing minute amounts of cells closely corroborated previously reported RNA dependent interactions and provided estimates of the relative overlap between factors in the mRNPs, thus depicting their heterogeneity. The described lysate-based FCS and FCCS analysis may not only complement current biochemical approaches but also provide novel opportunities for the quantitative analysis of the molecular composition and dynamics of single mRNPs.  相似文献   

3.
Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.  相似文献   

4.
Fluorescence (auto)correlation spectroscopy (FCS) has developed into a widely used method for investigating molecular dynamics and mobility of molecules in vitro and in vivo. Dual-color cross-correlation, an extension of this technique, also assesses the concomitant movement of two spectrally distinguishable fluorescent molecules and has therefore proven superior to autocorrelation analysis to study interactions between different molecular species in solution. Here we explore the benefits of cross-correlation analysis when applied to live cells, by demonstrating its potential in analyzing endocytic processes. Bacterial cholera toxin (CTX) was labeled with Cy2 and Cy5 dyes on different subunits of the same holotoxin. Along the endocytic pathway, positive cross-correlation between the A and B subunits was first preserved, later followed by a loss in cross-correlation upon their separation in the Golgi. Furthermore, endocytosis of a mixture of only Cy2- and only Cy5-labeled holotoxins also gave rise to cross-correlation. Our results suggest that cross-correlation may be used to recognize whether different cargoes use the same endocytic pathway. Additionally, we show that cross-correlation is applicable to two-dimensional membrane diffusion. CTX bound to GM1-containing artificial giant unilamellar vesicles was diffusible, whereas CTX bound to the plasma membrane was immobile on the FCS time-scale, possibly because of raft-association of GM1.  相似文献   

5.
Continuous flow capillary electrophoresis (CFCE) is non-separations based analytical technique based on the free solution electrophoretic mobility of biological molecules such as DNA, RNA, peptides, and proteins. The electrophoretic mobilities and translational diffusion constants of the analyte molecules are determined using single molecule detection methods, including fluorescence correlation spectroscopy (FCS). CFCE is used to resolve multiple components in a mixture of analytes, measure electrophoretic mobility shifts due to binding interactions, and study the hydrodynamic and electrostatic properties of biological molecules in solution. Often this information is obtained with greater speed and sensitivity than conventational separations-based capillary-zone electrophoresis. This paper will focus on the application of two-beam fluorescence cross-correlation spectroscopy as a versatile detection method for CFCE and explore several applications to the study of the solution properties of single-stranded DNA.  相似文献   

6.
Fluorescence Correlation Spectroscopy Measures Molecular Transport in Cells   总被引:3,自引:0,他引:3  
Fluorescence correlation spectroscopy (FCS) can measure dynamics of fluorescent molecules in cells. FCS measures the fluctuations in the number of fluorescent molecules in a small volume illuminated by a thin beam of excitation light. These fluctuations are processed statistically to yield an autocorrelation function from which rates of diffusion, convection, chemical reaction, and other processes can be extracted. The advantages of this approach include the ability to measure the mobility of a very small number of molecules, even down to the single molecule level, over a wide range of rates in very small regions of a cell. In addition to rates of diffusion and convection, FCS also provides unique information about the local concentration, states of aggregation and molecular interaction using fluctuation amplitude and cross-correlation methods. Recent advances in technology have rendered these once difficult measurements accessible to routine use in cell biology and biochemistry. This review provides a summary of the FCS method and describes current areas in which the FCS approach is being extended beyond its original scope.  相似文献   

7.
The recent development of single molecule detection techniques has opened new horizons for the study of individual macromolecules under physiological conditions. Conformational subpopulations, internal dynamics and activity of single biomolecules, parameters that have so far been hidden in large ensemble averages, are now being unveiled. Herein, we review a particular attractive solution-based single molecule technique, fluorescence correlation spectroscopy (FCS). This time-averaging fluctuation analysis which is usually performed in Confocal setups combines maximum sensitivity with high statistical confidence. FCS has proven to be a very versatile and powerful tool for detection and temporal investigation of biomolecules at ultralow concentrations on surfaces, in solution, and in living cells. The introduction of dual-color cross-correlation and two-photon excitation in FCS experiments is currently increasing the number of promising applications of FCS to biological research.  相似文献   

8.
Fluorescence correlation spectroscopy (FCS) is a powerful technique to study dynamic biomolecular processes. It allows the estimation of concentrations, diffusion coefficients, molecular interactions, and other processes causing fluctuations in the fluorescence intensity, thus yielding information about aggregation processes, enzymatic reactions, or partition coefficients. During the last years, FCS has been successfully applied to model and cellular membranes, proving to be a promising tool for the study of membrane dynamics and protein/lipid interactions. Here we describe the theoretical basis of FCS and some practical implications for its application in membrane studies. We discuss sources of potential artifacts, such as membrane undulations, positioning of the detection volume, and photobleaching. Special attention is paid to aspects related to instrumentation and sample preparation as well as data acquisition and analysis. Finally, we comment on some strategies recently developed for the specific improvement of FCS measurements on membranes.  相似文献   

9.
Dual color fluorescence cross-correlation spectroscopy (FCCS) provides information about the coincidence of spectrally well-defined two fluorescent molecules in a small observation area at the single-molecule level. To evaluate the activity of caspase-3 in vivo directly, FCCS was applied to single live cells. We constructed chimeric proteins that consisted of tandemly fused enhanced green FP (EGFP) and monomeric red FP (mRFP). In control experiments, the protease reaction was monitored in solution, where a decrease in cross-correlation amplitude was observed due to specific cleavage of the amino acid sequence between EGFP and mRFP. Moreover, a decrease in cross-correlation amplitude could be detected in a live cell, where caspase-3 activation was induced by apoptosis. This is the first report of FP-based in vivo cross-correlation analysis. FP-based FCCS may become the most versatile method for analysis of protein-protein interactions in live cells.  相似文献   

10.
荧光相关谱技术及其应用   总被引:3,自引:1,他引:2  
基于对处于平衡态少量荧光分子集合的强度涨落进行时间平均的技术,荧光相关谱fluoreswceance correlation spectroscopy,FCS)技术最近已经应用于细胞环境过程的研究。FCS优秀的灵敏特性为我们实时测量许多参数提供了途径,而且具有快速的时间特性和高空间分辨率。测量的参数包括扩散速率、局部浓度、聚合状态和分子间的相互作用。荧光互相关谱(fluorescence cross-correlation spectroscopy,FCCS)进一步扩展了FCS技术的应用,包括在活细胞中的广泛应用。本文介绍了FCS技术的原理、实验装置及其应用。  相似文献   

11.
Bacia K  Schwille P 《Nature protocols》2007,2(11):2842-2856
Dual-color fluorescence cross-correlation spectroscopy (FCCS) allows for the determination of molecular mobility and concentrations and for the quantitative analysis of molecular interactions such as binding or cleavage at very low concentrations. This protocol discusses considerations for preparing a biological system for FCCS experiments and offers practical advice for performing FCCS on a commercially available setup. Although FCCS is closely related to two-color confocal microscopy, critical adjustments and test measurements are necessary to establish successful FCCS measurements, which are described in a step-by-step manner. Moreover, we discuss control experiments for a negative cross-correlation artifact, arising from a lack of detection volume overlap, and a positive artifact, arising from cross-talk. FCCS has been applied to follow molecular interactions in solutions, on membranes and in cells and to analyze dynamic colocalization during intracellular transport. It is a technique that is expected to see new applications in various fields of biochemical and cell biological research.  相似文献   

12.
To probe the complexity of the cell membrane organization and dynamics, it is important to obtain simple physical observables from experiments on live cells. Here we show that fluorescence correlation spectroscopy (FCS) measurements at different spatial scales enable distinguishing between different submicron confinement models. By plotting the diffusion time versus the transverse area of the confocal volume, we introduce the so-called FCS diffusion law, which is the key concept throughout this article. First, we report experimental FCS diffusion laws for two membrane constituents, which are respectively a putative raft marker and a cytoskeleton-hindered transmembrane protein. We find that these two constituents exhibit very distinct behaviors. To understand these results, we propose different models, which account for the diffusion of molecules either in a membrane comprising isolated microdomains or in a meshwork. By simulating FCS experiments for these two types of organization, we obtain FCS diffusion laws in agreement with our experimental observations. We also demonstrate that simple observables derived from these FCS diffusion laws are strongly related to confinement parameters such as the partition of molecules in microdomains and the average confinement time of molecules in a microdomain or a single mesh of a meshwork.  相似文献   

13.
Fluorescence correlation spectroscopy (FCS) is rapidly growing in popularity as a biomedical research tool. FCS measurements can produce an accurate characterization of the chemical, physical, and kinetic properties of a biological system. They can also serve as a diagnostic, detecting particular molecular species with high sensitivity and specificity. We here demonstrate that dual-color FCS measurements can be applied to detect and quantify the concentration of specific non-fluorescent molecular species without requiring any modifications to the molecule of interest. We demonstrate this capability by applying dual-color two-photon fluorescence cross-correlation spectroscopy to detect single stranded gamma tubulin DNA in solution with high sensitivity. This quantification is independent of molecular size, and the methods introduced can be extended to measurements in complex environments such as within living cells.  相似文献   

14.
Fluorescence microscopy, especially confocal microscopy, has revolutionized the field of biological imaging. Breaking the optical diffraction barrier of conventional light microscopy, through the advent of super-resolution microscopy, has ushered in the potential for a second revolution through unprecedented insight into nanoscale structure and dynamics in biological systems. Stimulated emission depletion (STED) microscopy is one such super-resolution microscopy technique which provides real-time enhanced-resolution imaging capabilities. In addition, it can be easily integrated with well-established fluorescence-based techniques such as fluorescence correlation spectroscopy (FCS) in order to capture the structure of cellular membranes at the nanoscale with high temporal resolution. In this review, we discuss the theory of STED and different modalities of operation in order to achieve the best resolution. Various applications of this technique in cell imaging, especially that of neuronal cell imaging, are discussed as well as examples of application of STED imaging in unravelling structure formation on biological membranes. Finally, we have discussed examples from some of our recent studies on nanoscale structure and dynamics of lipids in model membranes, due to interaction with proteins, as revealed by combination of STED and FCS techniques.  相似文献   

15.
Here we discuss the application of scanning fluorescence correlation spectroscopy (SFCS) using continuous wave excitation to analyze membrane dynamics. The high count rate per molecule enables the study of very slow diffusion in model and cell membranes, as well as the application of two-foci fluorescence cross-correlation spectroscopy for parameter-free determination of diffusion constants. The combination with dual-color fluorescence cross-correlation spectroscopy with continuous or pulsed interleaved excitation allows binding studies on membranes. Reduction of photobleaching, higher reproducibility, and stability compared to traditional FCS on membranes, and the simple implementation in a commercial microscopy setup make SFCS a valuable addition to the pool of fluorescence fluctuation techniques.  相似文献   

16.
《Biophysical journal》2021,120(19):4230-4241
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.  相似文献   

17.
The formation of cell surface receptor clusters has been implicated of confirmed in the mechanism of signal transduction across biological membranes for a variety of processes, including receptor-mediated phagocytosis and endocytosis and cellular response to hormones and neurotransmitters. Flourescence correlation spectroscopy (FCS) is one technique that may provide insight into the kinetics and extent of receptor aggregation. Recent theoretical and experimental developments in FCS for the investigation of submicroscopic clusters of fluorescence molecules are described and the potential applications of the technique to receptor aggregation are reviewed.  相似文献   

18.
分子文库展示技术   总被引:1,自引:0,他引:1  
分子文库展示技术是一系列广泛应用于多肽、蛋白质及药物筛选和研究蛋白质间相互作用的有效的生物学技术。它将组合成的具有一定长度的随机序列寡核苷酸片段(或cDNA)克隆到特定表达载体中,使其表达产物(多肽片段或蛋白质结构域)以融合蛋白的形式展示在活的噬菌体或细胞表面。根据其蛋白质表达是否依赖于宿主表达系统,分为体内表达展示系统和无细胞展示系统(体外表达展示系统)。就其展示的部位不同又可分为噬菌体展示技术、细胞表面展示技术、核糖体展示技术、mRNA展示技术等。现对各种展示技术的基本原理及相关应用做简要综述。  相似文献   

19.
Elson EL 《Biophysical journal》2011,(12):2855-2870
In recent years fluorescence correlation spectroscopy (FCS) has become a routine method for determining diffusion coefficients, chemical rate constants, molecular concentrations, fluorescence brightness, triplet state lifetimes, and other molecular parameters. FCS measures the spatial and temporal correlation of individual molecules with themselves and so provides a bridge between classical ensemble and contemporary single-molecule measurements. It also provides information on concentration and molecular number fluctuations for nonlinear reaction systems that complement single-molecule measurements. Typically implemented on a fluorescence microscope, FCS samples femtoliter volumes and so is especially useful for characterizing small dynamic systems such as biological cells. In addition to its practical utility, however, FCS provides a window on mesoscopic systems in which fluctuations from steady states not only provide the basis for the measurement but also can have important consequences for the behavior and evolution of the system. For example, a new and potentially interesting field for FCS studies could be the study of nonequilibrium steady states, especially in living cells.  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is a widely used technique in biophysics and has helped address many questions in the life sciences. It provides important advantages compared to other fluorescence and biophysical methods. Its single molecule sensitivity allows measuring proteins within biological samples at physiological concentrations without the need of overexpression. It provides quantitative data on concentrations, diffusion coefficients, molecular transport and interactions even in live organisms. And its reliance on simple fluorescence intensity and its fluctuations makes it widely applicable. In this review we focus on applications of FCS in live samples, with an emphasis on work in the last 5 years, in the hope to provide an overview of the present capabilities of FCS to address biologically relevant questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号