首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab initio MO calculations were carried out at the MP2/6-311++G(d,p) level to investigate the conformational energy of 2-substituted oxanes and 1,3-dioxanes. It has been found that the Gibbs free energies of the axial conformers are smaller than those of the corresponding equatorial conformers in every case when the 2-substituent Z is electron withdrawing (OCH(3), F, Cl, Br). The difference in Gibbs energy between the equatorial and axial conformers DeltaG(eq-ax) increases from Z=OCH(3) to F, Cl, and then to Br. In the axial conformers, the interatomic distance between Z and the axial C-H, separated by four covalent bonds, has been found to be appreciably shorter than the van der Waals distance, suggesting the importance of the five-membered CH/n (CH/O or CH/halogen) hydrogen bond in stabilizing these conformations. Natural bonding orbital (NBO) charges of the relevant atoms have been shown to be different between the two conformers: more positive for H and more negative for C in the axial conformers than in the corresponding equatorial conformers. In view of the above findings, we suggest that the CH/n hydrogen bond plays an important role in stabilizing the axial conformation in 2-substituted oxanes and 1,3-dioxanes, and by implication, in the anomeric effect in carbohydrate chemistry.  相似文献   

2.
Previous static and dynamical density functional theory studies of the 2,6-di-O-acetyl-3,4-O-isopropylidene-D-galactopyranosyl cations and their methanol adducts has led to an hypothesis that these cations exist in two families of conformers characterized as (2)S(O) and B(2,5), respectively. These families differ by ring inversion, each with its own reactivity. New calculations on the 2,6-di-O-acetyl-3,4-di-O-methyl-D-galactopyranosyl cation confirmed these trends. Removing the isopropylidene group allows more flexibility, but two families of conformers can be discerned with the monocyclic oxocarbenium ions in the E(3) conformation and the bicyclic dioxolenium ions in the (4)H(5) conformation. Attack on the beta-face of these monocyclic cations is favored by hydrogen bonding and the anomeric effect. The experimentally observed high beta-stereoselectivity of mannopyranosyl donors and high alpha-stereoselectivity of glucopyranosyl donors with the 4,6-O-benzylidene protecting groups can be rationalized assuming that the trans-fused 1,3-dioxane ring allows population of only one family of conformers. The combination of hydrogen bonding and conformational changes of the pyranose ring in response to the C-5[bond]O-5[bond]C-1[bond]C-2 torsion angle changes are identified as key factors in stereoselectivity. Based on these observations a strategy to design face discriminated glycosyl donors that exist predominantly in only one family of conformers is proposed.  相似文献   

3.
Derivatization of carbohydrates is of considerable interest since the derivatives can be used for structural studies in the field of mass spectrometry. We report here the synthesis of a series of sterically crowded derivatives of various linkage and stereo-isomeric glucose-glucose disaccharides with the impetus being to understand the effect of these derivatized groups on fragmentation of the glycosidic bond and the development of methodology for discernment of the anomeric configuration. The synthesis of per-alkylated (methyl, ethyl, propyl, butyl, and pentyl), per-esterified (acetyl, pivaloyl, mesitoyl), and per-silylated (tert-butyl-dimethyl silyl) glucose--glucose disaccharide derivatives has been reported.  相似文献   

4.
The anomeric effect of 2-substituted 1,4-dioxane derivatives was calculated and compared with the values for substituted cyclohexane. The bond lengths, bond angles, torsion angles, and relative energies of axial and equatorial conformers of 2-substituted 1,4-dioxanes were calculated by the second-order Møller–Plesset (MP2), density functional theory (DFT/B3LYP), and Hartree–Fock (HF) methods using 6-31G basis set. The energy differences between the axial and equatorial conformers, endo and exo-anomeric effects, repulsive non-bond and H-bonding interactions were investigated. A linear free energy relationship (LFER) between calculated (MP2/6-31G) anomeric effect and inductive substituent constants (σI) was obtained for 2-substituted-1,4-dioxanes (slope = 6.19 and r2 = 0.967). The calculated energy differences indicate lower equatorial orientation for 2-substituted-1,4-dioxanes compared to the 2-substituted-tetrahydropyrans. The contribution of resonance, hyperconjugation, inductive, steric, hydrogen bonding, electrostatic interaction, and level of theory influences the anomeric effect.  相似文献   

5.
The crystal structure of 1-methylbenz[a]lanthracene, which is weakly carcinogenic, has been determined by application of direct methods to single-crystal X-ray diffractometric data and refined by least squares to R = 0.09 over 845 independent reflections. Crystals are monoclinic, space group P2(1), with a = 8.491(2), b = 7.138(2), c = 10.500(2)ABEta = 95.06(01), Z = 2. As in other benz[a]anthracenes, the K-region bond C(5)-C(6) is short [1.34(1)A]. The distinctive bay geometry, with a methyl group opposite to a hydrogen, H(12), peri to another hydrogen, H(11), has a long bond C(13)--C(18) = 1.47(1)A in the bay, and the angular benz-ring is inclined at 16.5 degrees to the mean plane of the anthracene fragment. The methyl carbon atom is 0.79 A out of the mean molecular plane (or 0.19 A out of the plane of the benz-ring) and the 1.50 A long C(1)-methyl bond makes angles of 117 degrees and 125 degrees at C(1).  相似文献   

6.
DFT calculations were carried out on axially and equatorially oriented 2-hydroperoxy and 2-peroxy tetrahydropyran, cyclohexyl hydroperoxide, hydroperoxides of 2,3-unsaturated hexapyranoses, and hydroperoxides of OMe and OBn substituted derivatives of 2-deoxy-glucopyranose and 2-deoxy-galactopyranose to investigate the anomeric and exo-anomeric effects of these groups. The structure and energy of the conformers were calculated at the B3LYP/6-311++G** level. Calculations showed that the peroxy anion group exhibits a strong anomeric effect, comparable in magnitude to the methoxy group, and that the anomeric effect of the hydroperoxy group is similar to the hydroxyl group. These results revealed that hydroperoxy and peroxy anion groups display an exo-anomeric effect, but the orientation around the C1-O1 bond is also affected by hydrogen bonding and electrostatic interactions.  相似文献   

7.
The rotational barrier for a methyl group at the end of an anomeric system is sometimes lower than we might have anticipated. Thus, in the trans-trans conformation of dimethoxymethane, the barrier to methyl rotation is calculated (B3LYP/6-311++G(2d,2p)) to be 2.22 kcal/mol, just slightly smaller than the corresponding barrier to rotation of the methyl group in methyl propyl ether of 2.32 kcal/mol. However, if the methyl being rotated in dimethoxymethane is placed into a gauche conformation, that rotational barrier is reduced to 1.52 kcal/mol. This substantial (0.80 kcal/mol relative to methyl propyl ether) reduction in barrier height in the latter case is attributed mainly to the change in the bond order of the C-O bond to which the methyl is attached, as a function of conformation, which in turn is a result of the anomeric effect. We have called this barrier lowering the external-anomeric torsional effect. This effect is apparently widespread in carbohydrates, and it results in the changing of conformational energies by up to about 2 kcal/mol. If polysaccharide potential surfaces are to be accurately mapped by molecular mechanics, this effect clearly needs to be accounted for.  相似文献   

8.
Detailed structural, electronic and spectroscopic study of 4-methylthiadiazole-5-carboxylic acid, one of the simplest 1,2,3-thiadiazole derivatives has been performed using density functional theory at four different functionals (B3LYP, X3LYP, CAM-B3LYP and M06-2X). The two possible conformers and their dimeric forms have been investigated for the stability and hence for the calculation of molecular properties of the title compound. Vibrational analysis has been performed with the help of experimental FT-IR and FT-Raman spectra. NBO analysis has been performed to estimate the N–H—O=C hydrogen bond strength and to evaluate the intra and inter molecular charge transfer in the system. Intermolecular hydrogen-bond strength has also been computed using Atoms in Molecules (AIM) theory. To visualise spatial domain, key sites of electron transitions and electron density difference between ground as well as excited states, and their 2D and 3D plots have been computed. Solvent effect on the intermolecular hydrogen bonding have also been investigated using solvents of different polarities. Non-linear optical properties, molecular electrostatic potential surface map (MESP), thermodynamic potentials at different temperatures have also been computed and plotted.  相似文献   

9.
Extensive DFT and ab initio calculations were performed to characterize the conformational space of pamidronate, a typical pharmaceutical for bone diseases. Mono-, di- and tri-protic states of molecule, relevant for physiological pH range, were investigated for both canonical and zwitterionic tautomers. Semiempirical PM6 method were used for prescreening of the single bond rotamers followed by geometry optimizations at the B3LYP/6-31++G(d,p) and B3LYP/6-311++G(d,p) levels. For numerous identified low energy conformers the final electronic energies were determined at the MP2/6-311++G(2df,2p) level and corrected for thermal effects at B3LYP level. Solvation effects were also considered via the COSMO and C-PCM implicit models. Reasonable agreement was found between bond lengths and angle values in comparison with X-ray crystal structures. Relative equilibrium populations of different conformers were determined from molecular partition functions and the role of electronic, vibrational and rotational degrees of freedom on the stability of conformers were analyzed. For no level of theory is a zwitterionic structure stable in the gas-phase while solvation makes them available depending on the protonation state. Geometrically identified intramolecular hydrogen bonds were analyzed by QTAIM approach. All conformers exhibit strong inter-phosphonate hydrogen bonds and in most of them the alkyl-amine side chain is folded on the P-C-P backbone for further hydrogen bond formation.
Figure
The most stable conformers of pamidronate at different protonation states in gas-phase and solution.  相似文献   

10.
Ab initio molecular orbital calculations were performed on 2-deoxy-beta-D-glycero-tetrofuranose (1) using the 6-31G* basis set to evaluate the effect of ring conformation on the molecular parameters (bond lengths, angles, and torsions). Geometric optimizations were conducted on the planar and ten envelope conformers of 1, and these data were compared to those obtained from previous calculations using the STO-3G and 3-21G basis sets. Conformational energy profiles derived from 3-21G and 6-31G* data were found to be qualitatively comparable. The effect of furanose ring conformation on key bond lengths (e.g., C-H, C-O), bond angles (e.g., COC), and bond torsions (e.g., the exoanomeric C-1-O-1 torsion) was examined, and a qualitative agreement was observed between the 3-21G and 6-31G* analyses. The results indicate that, for semi-quantitative ab initio studies of intact carbohydrates, the 3-21G basis set is sufficient, and that the STO-3G basis set should not be employed unless crude structural approximations are desired. The observed concerted behavior of C-O bond lengths in the vicinity of the anomeric carbon of the aldofuranose ring has suggested a possible role of C-1-O-1 bond orientation in affecting the mechanism of glycoside bond hydrolysis.  相似文献   

11.
Hydroxylation of 19-hydroxyandrost-4-ene-3,17-dione (19OHA) by aromatase occurs at the 19-pro-R hydrogen, suggesting that the C19 group has a preferred conformation in the enzyme active site. X-ray crystallographic studies have led to a postulate that the steroid plays a role in determining this conformation. In an effort to quantitate the steroid's role, we estimated conformational constraints about the C10-C19 bond of 19OHA using molecular mechanics calculations. Rotational barriers less than or equal to 6 kcal/mol and energy differences between conformers less than or equal to 1 kcal/mol were found. We perturbed these conformational constraints by preparing an altered substrate, 19-hydroxyandrosta-4,6-diene-3,17-dione (19OHAD). The stereospecificity of aromatization for 19OHA and 19OHAD was found to be the same. Thus, theoretical and experimental approaches both indicate that conformational constraints intrinsic to 19OHA cannot be a major determinant in the sterospecificity of its oxidation by aromatase.  相似文献   

12.
The novel glycosphingolipid, SEGLx (Gal beta 1-4(Fuc alpha 1-3)Glc beta 1-3Gal beta Cer), which was identified by us (Kawakami Y, et al. (1993) J Biochem 114: 677-83), shows a characteristic spectrum on 1H-NMR analysis, in which the anomeric proton resonances of a reducing end galactose and a glucose are split. To elucidate the structural characteristics of SEGLx, we determined its three-dimensional (3D) structure by means of computer simulation, involving such techniques as molecular mechanics (MM2), the semiempirical molecular orbital method (AM1), molecular dynamics (Amber), and computer 3D modelling. With the hypothesis that all OH group(s) of a ceramide participate in intramolecular hydrogen bonds, two kinds of stable conformers, horizontal and right-angled ones, were formed, depending on the ceramide species. The present findings suggest that the chemical species of both the long chain base and fatty acid moieties, mainly the occurrence of OH group(s), affect the chemical shifts of the anomeric proton resonances not only of the reducing terminal galactose but also the penultimate glucose through the formation of intramolecular hydrogen bonds. Computer simulation through theoretical calculation and 3D modelling was shown to be the best means of confirming the results obtained by experimental analysis.  相似文献   

13.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

14.
Four 7a-methyl octa(or hexa)hydrocyclopenta[d][1,3]oxazines, five 8a-methyl octa(or hexa)hydro[3,1]benzoxazines, two 6-phenyl hexahydro[3,1]benzoxazinones, and 8a-methyl hexahydro[1,3]benzoxazinone, all cis-fused, were prepared and their stereostructures studied by various one- and two-dimensional (1)H, (13)C, and (15)N NMR spectroscopic methods. In solution, the cyclopentane-fused 2-oxo derivatives and the 1,3-benzoxazinone were found to attain exclusively the N-in/O-in conformation, whereas the 6-phenyl 2-oxo/thioxo derivatives were found to be present predominantly in the N-out conformation. The C-2 unsubstituted and the 2-oxo/thioxo 7a/8a-methyl derivatives were all present in solution as a rapidly interconverting equilibrium of the N-in and N-out conformations. The C-2 methyl derivatives were each found to be interconvertable mixtures of epimers (at C-2) with the N-in conformer predominating for one epimer and the N-out conformer predominating for the other, with both predominating conformers having the C-2 methyl group equatorially orientated. The substituent on the nitrogen (H or Me) was found to be always predominantly equatorial with respect to the heteroring, except for the epimeric 2-methyl derivatives with N-out conformations where steric constraints and the generalized anomeric effect resulted in the axial orientation of the C-2 methyl being favored.  相似文献   

15.
Crystal-structure determination of trans-O-β-D-glucopyranosyl methyl acetoacetate, C11H18O8, m.p. 186°, confirmed the trans orientation deduced previously from physical properties. The conformation of the D-glucopyranosyl group is 4C1, although the most symmetrical chair-conformer is actually 3Co. The glycosidic link is sc, with a CO anomeric bond of 1.428 Å (142.8 pm), i.e. longer than is normal in methyl β-glycopyranosides. All of the hydrogen bonding is intermolecular. The unusual optical rotations in solution can be interpreted in terms of rotameric populations that are derived from the solid-state conformers and are stabilized by intramolecular or solvent hydrogen-bonding.  相似文献   

16.
Stereochemical properties of the glycosidic linkage have been studied by the quantum-chemical PCILO method, using 2-methoxytetrahydropyran as a model. Calculations of the two-dimensional, conformational (Φ, Ψ) maps showed that the rotation around the C-1---O-1 bond is more hindered than that around the O-1---C-6 bond, and that there are differences in the shape of the energy curve for the axial and equatorial forms of 2-methoxytetrahydropyran. The observed population of the five stable conformers at equilibrium (GG:GT:TG1:TG2:TT = 70.8:6.0:19.9:2.0:1.3) is consistent with the prediction of the anomeric and exo-anomeric effects. The calculated abundance (76.8%) of the axial form of 2-methoxytetrahydropyran is comparable with experimental results (77–80%) obtained by n.m.r. measurements in non-polar solvents. The energies found for individual conformers made it possible to calculate the magnitude of the anomeric effect (3 kJ/mol) and to determine, for the first time, the values of the exo-anomeric effect for axial (6 kJ/mol) and equatorial 2-methoxytetrahydropyran (7 kJ/mol). The calculated variations of the geometry arising from rotation around the C-1---O-1 bond are consistent with results obtained by statistical analysis of experimental data for - and β-glycosides. The results obtained, indicating that the energy, geometry, and electronic structure of glycosides are largely affected by the conformation of the acetal segment, are discussed from the point of view of conformational analysis of oligo- and poly-saccharides.  相似文献   

17.
Molecular dynamics simulations of a 3 molal aqueous solution of d-sorbitol (also called d-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data support a more bent structure.  相似文献   

18.
Electroreduction of the disulfide derivative RSSR (5, R= [bond]C(6)H(4)[bond]CO[bond]C(6)H(4)[bond]CN) on a mercury pool or a carbon gauze electrode in the presence of 2,3,4-tri-O-acetyl-5-thio-D-xylopyranosyl bromide (1), using a sacrificial zinc anode gave an alpha,beta anomeric mixture of [4-(4-cyanobenzoylphenyl)] 2,3,4-tri-O-acetyl-1,5-dithio-D-xylopyranoside (6) in 40-70% yield, according to the experimental conditions used (nature of solvent, electrolyte salt, and temperature). High selectivity favouring the alpha anomer of 6 is observed starting from the alpha anomer of 1. Mechanistic aspects are discussed.  相似文献   

19.
Ab initio MO calculations were carried out at the MP4/6-311++G(3df,3pd)//MP2/6-311++G(3df,3pd) level to investigate the conformational Gibbs energy of a series of methyl ethers CH3O-CH2-X (X = OH, OCH3, F, Cl, Br, CN, CCH, C6H5, CHO). It was found that the Gibbs energy of the gauche conformers is lower in every case than that of the corresponding anti conformers. In the more stable gauche conformers, the interatomic distance between X and the hydrogen atom was shorter than the sum of the van der Waals radii. The natural bonding orbital (NBO) charges of group X were more negative in the gauche conformers than in the anti conformers. We suggest that the CH/n and CH/π hydrogen bonds play an important role in stabilizing the gauche conformation of these compounds.  相似文献   

20.
When the stereospecifically deuterated dopamine enantiomers, (R)- and (S)-[alpha-2H1]dopamine, are incubated with amine oxidases, the deuterium atom may be either retained to form monodeuterated 3,4-dihydroxyphenylacetaldehyde, or eliminated to produce the nondeuterated or protio-aldehyde product. These two aldehydes can be separated from one another and identified by high-performance liquid chromatography with electrochemical detection. Three types of stereospecific abstraction of a hydrogen from the alpha-carbon of dopamine during deamination have been observed. In the first type, the pro-R hydrogen is removed from the alpha-carbon. Enzymes in this category are mitochondrial monoamine oxidases A and B, as isolated from different tissues and species. The second type of deamination involves the abstraction of pro-S hydrogen from the alpha-carbon of dopamine. Soluble enzymes, such as rat aorta benzylamine oxidase or diamine oxidase from hog kidney and pea seedling, have been found to belong to this group. Bovine plasma amine oxidase exhibits the third type of deamination where no absolute stereospecificity is required. This enzyme catalyzes the oxidation of either (S)- or (R)-[alpha-2H1]dopamine, preferably breaking the C-H bond rather than the C-2H bond in both cases. The kinetic deuterium isotope effect during the deamination of dopamine catalyzed by the different amine oxidases varies greatly; VH/VD ranges from 1.5 to 5.5. The high magnitude of the isotope effect suggests that hydrogen abstraction may be the rate-limiting step (i.e., in reactions catalyzed by benzylamine oxidase and monoamine oxidase). When the isotope effect is low (i.e., for diamine oxidases from hog kidney or pea seedling), it is uncertain if the breaking of the bond is rate limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号