首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major online single nucleotide polymorphism (SNP) databases freely available as research tools for genetic analysis are explained, reviewed, and compared. An outline is given of the search strategies that can be used with the most extensive current SNP databases: National Centre for Biotechnology Information (NCBI) dbSNP and HapMap to help the user secure the most appropriate data for the research needs of clinical genetics and population genetics research. A range of online tools that can be useful in designing SNP genotyping assays are also detailed.  相似文献   

2.
Design and Characterization of a 52K SNP Chip for Goats   总被引:3,自引:0,他引:3  
The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.  相似文献   

3.
Many association studies provide the relationship between single nucleotide polymorphisms (SNPs), diseases and cancers, without giving a SNP ID, however. Here, we developed the SNP ID-info freeware to provide the SNP IDs within inputting genetic and physical information of genomes. The program provides an "SNP-ePCR" function to generate the full-sequence using primers and template inputs. In "SNPosition," sequence from SNP-ePCR or direct input is fed to match the SNP IDs from SNP fasta-sequence. In "SNP search" and "SNP fasta" function, information of SNPs within the cytogenetic band, contig position, and keyword input are acceptable. Finally, the SNP ID neighboring environment for inputs is completely visualized in the order of contig position and marked with SNP and flanking hits. The SNP identification problems inherent in NCBI SNP BLAST are also avoided. In conclusion, the SNP ID-info provides a visualized SNP ID environment for multiple inputs and assists systematic SNP association studies. The server and user manual are available at http://bio.kuas.edu.tw/snpid-info.  相似文献   

4.
5.
SNP(single nucleotide polymorphism,单核苷酸多态)在猪基因组中的分布极其广泛,平均分布间隔为300~400 bp,相关数据库收录已达55万条。猪基因组测序已取得实质性进展,大规模搜索发现基因组及EST(expressed sequence tag)序列中的SNP已展开,应用于猪全基因组水平的SNP芯片已建立。在此基础上,基于猪SNP标记的遗传图谱绘制、QTL(quantitative trait loci)定位、遗传多样性检测及全基因组关联分析等也都相继出现。  相似文献   

6.
An F2 chicken population was established from a crossbreeding between a Xinghua line and a White Recessive Rock line. A total of 502 F2 chickens in 17 full-sib families from six hatches was obtained, and phenotypic data of 488 individuals were available for analysis. A total of 46 SNP on GGA1 was initially selected based on the average physical distance using the dbSNP database of NCBI. After the polymorphism levels in all F0 individuals (26 individuals) and part of the F1 individuals (22 individuals) were verified, 30 informative SNP were potentially available to genotype all F2 individuals. The linkage map was constructed using Cri-Map. Interval mapping QTL analyses were carried out. QTL for body weight (BW) of 35 d and 42 d, 49 d and 70 d were identified on GGA1 at 351–353 cM and 360 cM, respectively. QTL for abdominal fat weight was on GGA1 at 205 cM, and for abdominal fat rate at 221 cM. Two novel QTL for fat thickness under skin and fat width were detected at 265 cM and 72 cM, respectively.  相似文献   

7.
SNPCEQer II is a graphical user interface (GUI)-based application that integrates single nucleotide polymorphism (SNP) detection, SNP analysis and SNP editing in the Microsoft Windows (R) environment. SNPCEQer II detects SNPs in DNA sequences generated by the Beckman CEQ TM 2000 XL DNA analysis system. It provides tools to analyse SNPs by inspecting and comparing trace data (chromatograms) around putative SNPs with that of other related DNA sequences, and it can search for those SNPs in the National Center for Biotechnology Information (NCBI) databases. SNPCEQer II can determine the mutation type of a coding SNP and generate data for submission to the dbSNP database. The SNP report can be edited and printed, as can the chromatograms. SNPCEQer II is implemented in Visual C++.  相似文献   

8.
Identification of RNA editing sites in the SNP database   总被引:3,自引:0,他引:3  
The relationship between human inherited genomic variations and phenotypic differences has been the focus of much research effort in recent years. These studies benefit from millions of single-nucleotide polymorphism (SNP) records available in public databases, such as dbSNP. The importance of identifying false dbSNP records increases with the growing role played by SNPs in linkage analysis for disease traits. In particular, the emerging understanding of the abundance of DNA and RNA editing calls for a careful distinction between inherited SNPs and somatic DNA and RNA modifications. In order to demonstrate that some of the SNP database records are actually somatic modification, we focus on one type of these modifications, namely A-to-I RNA editing, and present evidence for hundreds of dbSNP records that are actually editing sites. We provide a list of 102 RNA editing sites previously annotated in dbSNP database as SNPs, and experimentally validate seven of these. Interestingly, we show how dbSNP can serve as a starting point to look for new editing sites. Our results, for this particular type of RNA editing, demonstrate the need for a careful analysis of SNP databases in light of the increasing recognition of the significance of somatic sequence modifications.  相似文献   

9.
dbSNP: a database of single nucleotide polymorphisms   总被引:12,自引:0,他引:12       下载免费PDF全文
In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Cancer for Biotechnology Information (NCBI) has established the dbSNP database. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. Submitted SNPs can also be downloaded via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/  相似文献   

10.
dbSNP: the NCBI database of genetic variation   总被引:1,自引:0,他引:1  
In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.  相似文献   

11.
Migratory birds are of particular interest for population genetics because of the high connectivity between habitats and populations. A high degree of connectivity requires using many genetic markers to achieve the required statistical power, and a genome wide SNP set can fit this purpose. Here we present the development of a genome wide SNP set for the Barnacle Goose Branta leucopsis, a model species for the study of bird migration. We used the genome of a different waterfowl species, Mallard Anas platyrhynchos, as a reference to align Barnacle Goose second generation sequence reads from an RRL library and detected 2188 SNPs genome wide. Furthermore, we used chimeric flanking sequences, merged from both Mallard and Barnacle Goose DNA sequence information, to create primers for validation by genotyping. Validation with a 384 SNP genotyping set resulted in 374 (97%) successfully typed SNPs in the assay, of which 358 (96%) were polymorphic. Additionally, we validated our SNPs on relatively old (30 years) museum samples, which resulted in a success rate of at least 80%. This shows that museum samples could be used in standard SNP genotyping assays. Our study also shows that the genome of a related species can be used as reference to detect genome wide SNPs in birds, because genomes of birds are highly conserved. This is illustrated by the use of chimeric flanking sequences, which showed that the incorporation of flanking nucleotides from Mallard into Barnacle Goose sequences lead to equal genotyping performance when compared to flanking sequences solely composed of Barnacle Goose sequence.  相似文献   

12.
Khan MA  Han Y  Zhao YF  Korban SS 《Gene》2012,494(2):196-201
EST data generated from 14 apple genotypes were downloaded from NCBI and mapped against a reference EST assembly to identify Single Nucleotide Polymorphisms (SNPs). Mapping of these SNPs was undertaken using 90% of sequence similarity and minimum coverage of four reads at each SNP position. In total, 37,807 SNPs were identified with an average of one SNP every 187 bp from a total of 6888 unique EST contigs. Identified SNPs were checked for flanking sequences of ≥ 60 bp along both sides of SNP alleles for reliable design of a custom high-throughput genotyping assay. A total of 12,299 SNPs, representing 6525 contigs, fit the selected criterion of ≥ 60 bp sequences flanking a SNP position. Of these, 1411 SNPs were validated using four apple genotypes. Based on genotyping assays, it was estimated that 60% of SNPs were valid SNPs, while 26% of SNPs might be derived from paralogous regions.  相似文献   

13.
A total of 5450 sequences obtained from the NCBI pig SNP database were consolidated into 465 unique sequences (189 singleton sequences and 276 contigs). These 465 sequences contained 1787 putative SNPs and had strong sequence homology to 433 human protein-coding genes based on blast analyses. These genes were assigned to the pig QTL maps ( http://www.animalgenome.org/QTLdb/pig.html ) via the human and pig comparative maps established by a pig radiation hybrid (RH) map. The SNP information characterized from this study provides a useful functional gene variation resource to facilitate QTL data mining in the pig genome.  相似文献   

14.
MonkeySNP is a web-based resource created by the Genetic Resource and Informatics Program at the Oregon National Primate Research Center to facilitate access to non-human primate (NHP) single nucleotide polymorphisms (SNP) data. MonkeySNP is a mirror of the NCBI dbSNP database and contains additional NHP subpopulation genotype data and visual genotype displays to support SNP review and selection. AVAILABILITY: http://monkeysnp.ohsu.edu/snp/ SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
16.

Background  

In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once.  相似文献   

17.
As part of a program to develop forward and reverse genetics platforms in the diploid strawberry [Fragaria vesca L.; (2n = 2x = 14)] we have generated insertional mutant lines by T-DNA mutagenesis using pCAMBIA vectors. To characterize the T-DNA insertion sites of a population of 108 unique single copy mutants, we utilized thermal asymmetric interlaced PCR (hiTAIL-PCR) to amplify the flanking region surrounding either the left or right border of the T-DNA. Bioinformatics analysis of flanking sequences revealed little preference for insertion site with regard to G/C content; left borders tended to retain more of the plasmid backbone than right borders. Primers were developed from F. vesca flanking sequences to attempt to amplify products from both parents of the reference F. vesca 815 × F. bucharica 601 mapping population. Polymorphism occurred as: presence/absence of an amplification product for 16 primer pairs and different size products for 12 primer pairs, For 46 mutants, where polymorphism was not found by PCR, the amplification products were sequenced to reveal SNP polymorphism. A cleaved amplified polymorphic sequence/derived cleaved amplified polymorphism sequence (CAPS/dCAPS) strategy was then applied to find restriction endonuclease recognition sites in one of the parental lines to map the SNP position of 74 of the T-DNA insertion lines. BLAST search of flanking regions against GenBank revealed that 46 of 108 flanking sequences were close to presumed strawberry genes related to annotated genes from other plants.  相似文献   

18.
SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development   总被引:7,自引:0,他引:7  
With the influx of various SNP genotyping assays in recent years, there has been a need for an assay that is robust, yet cost effective, and could be performed using standard gel-based procedures. In this context, CAPS markers have been shown to meet these criteria. However, converting SNPs to CAPS markers can be a difficult process if done manually. In order to address this problem, we describe a computer program, SNP2CAPS, that facilitates the computational conversion of SNP markers into CAPS markers. 413 multiple aligned sequences derived from barley ESTs were analysed for the presence of polymorphisms in 235 distinct restriction sites. 282 (90%) of 314 alignments that contain sequence variation due to SNPs and InDels revealed at least one polymorphic restriction site. After reducing the number of restriction enzymes from 235 to 10, 31% of the polymorphic sites could still be detected. In order to demonstrate the usefulness of this tool for marker development, we experimentally validated some of the results predicted by SNP2CAPS.  相似文献   

19.
Deviation from multiplicativity of genetic risk factors is biologically plausible and might explain why Genome-wide association studies (GWAS) so far could unravel only a portion of disease heritability. Still, evidence for SNP-SNP epistasis has rarely been reported, suggesting that 2-SNP models are overly simplistic. In this context, it was recently proposed that the genetic architecture of complex diseases could follow limiting pathway models. These models are defined by a critical risk allele load and imply multiple high-dimensional interactions. Here, we present a computationally efficient one-degree-of-freedom “supra-multiplicativity-test” (SMT) for SNP sets of size 2 to 500 that is designed to detect risk alleles whose joint effect is fortified when they occur together in the same individual. Via a simulation study we show that the SMT is powerful in the presence of threshold models, even when only about 30–45% of the model SNPs are available. In addition, we demonstrate that the SMT outperforms standard interaction analysis under recessive models involving just a few SNPs. We apply our test to 10 consensus Alzheimer’s disease (AD) susceptibility SNPs that were previously identified by GWAS and obtain evidence for supra-multiplicativity () that is not attributable to either two-way or three-way interaction.  相似文献   

20.
DNA variants, such as single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), are unevenly distributed across the human genome. Currently, dbSNP contains more than 6 million human SNPs, and whole-genome genotyping arrays can assay more than 4 million of them simultaneously. In our study, we first questioned whether published genome-wide association studies (GWASs) assays cover all regions well in the genome. Using dbSNP build 135 data, we identified 50 genomic regions longer than 100 Kb that do not contain any common SNPs, i.e., those with minor allele frequency (MAF)≥1%. Secondly, because conserved regions are generally of functional importance, we tested genes in those large genomic regions without common SNPs. We found 97 genes and were enriched for reproduction function. In addition, we further filtered out regions with CNVs listed in the Database of Genomic Variants (DGV), segmental duplications from Human Genome Project and common variants identified by personal genome sequencing (UCSC). No region survived after those filtering. Our analysis suggests that, while there may not be many large genomic regions free of common variants, there are still some “holes” in the current human genomic map for common SNPs. Because GWAS only focused on common SNPs, interpretation of GWAS results should take this limitation into account. Particularly, two recent GWAS of fertility may be incomplete due to the map deficit. Additional SNP discovery efforts should pay close attention to these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号